• Title/Summary/Keyword: Carbon-carbon bond activation

Search Result 16, Processing Time 0.018 seconds

Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study

  • Choe, Sang-Joon;Kang, Hae-Jin;Kim, Su-Jin;Park, Sung-Bae;Park, Dong-Ho;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1682-1688
    • /
    • 2005
  • Using the ASED-MO (Atom Superposition and Electron Delocalization-Molecular Orbital) theory, we investigated carbon formation and carbon hydrogenation for $CO_2$ methanation on the Ni (111) surface. For carbon formation mechanism, we calculated the following activation energies, 1.27 eV for $CO_2$ dissociation, 2.97 eV for the CO, 1.93 eV for 2CO dissociation, respectively. For carbon methanation mechanism, we also calculated the following activation energies, 0.72 eV for methylidyne, 0.52 eV for methylene and 0.50 eV for methane, respectively. We found that the calculated activation energy of CO dissociation is higher than that of 2CO dissociation on the clean surface and base on these results that the CO dissociation step are the ratedetermining of the process. The C-H bond lengths of $CH_4$ the intermediate complex are 1.21 $\AA$, 1.31 $\AA$ for the C${\cdot}{\cdot}{\cdot}H_{(1)}$, and 2.82 $\AA$ for the height, with angles of 105${^{\circ}}$ for ∠ $H_{(1)}$CH and 98${^{\circ}}$ for $H_{(1)} CH _{(1)}$.

Zeolite-catalyzed Isomerization of 1-Hexene to trans-2-Hexene: An ONIOM Study

  • Li, Yan-Feng;Zhu, Ji-Qin;Liu, Hui;He, Peng;Wang, Peng;Tian, Hui-Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1851-1858
    • /
    • 2011
  • Details of the double-bond isomerization of 1-hexene over H-ZSM-5 were clarified using density functional theory. It is found that the reaction proceeds by a mechanism which involves the Br${\o}$nsted acid part of the zeolite solely. According to this mechanism, 1-hexene is first physically adsorbed on the acidic site, and then, the acidic proton transfers to one carbon atom of the double bond, while the other carbon atom of the double bond bonds with the Br${\o}$nsted host oxygen, yielding a stable alkoxy intermediate. Thereafter, the Br${\o}$nsted host oxygen abstracts a hydrogen atom from the $C_6H_{13}$ fragment and the C-O bond is broken, restoring the acidic site and yielding trans-2-hexene. The calculated activation barrier is 12.65 kcal/mol, which is in good agreement with the experimental value. These results well explain the energetic aspects during the course of double-bond isomerization and extend the understanding of the nature of the zeolite active sites.

Nucleophilic Substitution at a Carbonyl Carbon Atom (V). Kinetic Studies on Halogen Exchange Reactions of N,N-Dialkylcarbamoyl Chlorides in Dry Acetone (카르보닐 탄소원자의 친핵치환 반응 (제5보). 아세톤 용매속에서의 Dialkylcarbamoyl Chloride의 할로겐 교환반응에 관한 속도론적 연구)

  • Kim Shi Choon;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.11-15
    • /
    • 1975
  • Kinetic study of halogen exchange for N,N-dimethylcarbamoyl chloride and N,N-diethylcarbamoyl chloride in acetone by using radioisotopic halide ions has been carried out at two temperatures as a part of studying the reactivity of carbonyl carbon atom. The order of nucleophilicity showed a similar tendency as that for alkyl chloroformate, but reaction rate is much slower than that for solvolysis and alkyl chloroformate. The activation parameters,${\Delta}H^*$and${\Delta}S^*$ were found to decrease in sequence $Cl^{\rightarrow}Br^{\rightarrow}I^-$ for N,N-dialkylcarbamoyl chlorides. The results are interpreted in terms of solvation effect, degree of bond-breaking and bond-formation and electronic requirements.

  • PDF

Recent advance on the borylation of carbon-oxygen bonds in aromatic compounds

  • Jeon, Seungwon;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • Organoboron compounds and their derivatives are synthetically versatile building blocks because they are readily available, stable, and highly useful for potential organic transformations. Arylboronic esters are of particular interest due to their well-established synthetic methods: transition metal catalyzed borylations of aryl halides. However, the use of aryl halides as an electrophile has one serious disadvantage: formation of toxic halogenated byproducts. A promising alternative substrate to aryl halides would be phenol derivatives such as aryl ethers, esters, carbamates and sulfonates. The phenol derivatives involve several advantages: their abundance, relatively low toxicity and versatile synthetic application. However, utilization of the aryl methyl ether, which is one of the simplest phenol derivatives, remains as a challenge, as C-OMe bond activation requires high activation energy and methoxides are not good leaving groups. Nevertheless, there have been a significant recent progress on ipso-borylation of aryl methyl ether including Martin's nickel catalysis. Here, we review the current advance on the borylation of carbon-oxygen bonds of unactivated C-OMe bond in aromatic compounds.

Rhodium-Catalyzed Reductive Decyanation of Nitriles Using Hydrosilane as a Reducing Agent: Scope, Mechanism and Synthetic Application

  • Tobisu, Mamoru;Nakamura, Ryo;Kita, Yusuke;Chatani, Naoto
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.582-587
    • /
    • 2010
  • A rhodium-catalyzed reductive cleavage reaction of carbon-cyano bonds is developed using hydrosilane as a mild reducing agent. A wide range of nitriles, including aryl, benzyl, and $\beta$-hydrogen containing alkyl cyanides are applicable to this decyanation reaction. The method is also applicable to organic synthesis, in which benzyl cyanide is used as a benzyl anion equivalent and a cyano group functions as a removable ortho-directing group.

Extrathermodynamic Relationships for the Nucleophilic Addition Reaction of Mercaptan to a Carbon Double Bond (炭素二重結合에 대한 Mercaptan의 친핵성 첨가 반응의 Extrathermodynamic Relationship에 관한 연구)

  • OK-HYUN PARK;TAE-SUP UHN
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.297-302
    • /
    • 1969
  • The activation parameters for the nucleophilic addition reactions of n-propyl-, n-butyl-, n-amyl-and n-hexyl-mercaptan to 3, 4-methylene-dioxy-${\beta}$-nitrostyrene were determined at pH 5.8 and pH 2.0, and also the isokinetic temperature of the reactions at pH 5.8 was obtained numerically 262${\circ}$K, and at pH 2.0, 17.1${\circ}$K. From the values obtained above, the fact that the mercaptan having the longer carbon chain has the greater nucleophilicity of it in the addition reactions has been discussed by the extrathermodynamic analysis of ${\Delta}H^{\neq}$and ${\Delta}S^{\neq}$.

  • PDF

Recent advances of aromatic C-F bond borylation and its application to positron emission tomography

  • Song, Dalnim;Lee, Sanghee;Lee, Byung Chul;Kim, Sang Eun;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.80-87
    • /
    • 2015
  • Carbon-fluorine (C-F) bonds have been found ubiquitously in pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science due to their unique properties such as thermal and oxidative stability and lipophilicity to improve bioavailability. For the past five years, there have been significant advances in F-18 fluorination of aromatic complex molecules combined with the development of late-stage fluorination reactions. More recently, direct incorporation of F-18 to fluorinated aromatic molecules via borylation of C-F bonds has been developed by Niwa and Hosoya. In this minireview, we will discuss the progress of C-F bondborylation of fluorinated arenes utilizing transition metal catalysts and the impact on the development of F-18 radiotracers for positron emission tomography (PET).

Interfacial Properties of Polypropylene Fiber in High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 복합체 내에서 폴리프로필렌 섬유의 계면 부착성능)

  • Han Byung-Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.108-111
    • /
    • 2004
  • The polypropylene(PP) fiber is poised as a low cost alternative for reinforcement in structural applications in comparison with other high performance fibers, such as the polyvinyl-alcohol(PVA), polyethylene, carbon and aramid fiber. The mechanical properties of the composite are strongly determined by the interfacial behavior of fiber and cementitious matrix. The crack bridging mechanism contribute to composite toughness from activation of the fiber-matrix interface where energy is dissipated through debonding of the interface and fiber pullout. In this study, therefore, the pullout behavior of PP fibers is investigated. Experimental work includes the investigation of the interfacial properties, and the composite property. The quantification of interfacial properties, the frictional bond is achieved through single fiber pullout test. A study on the effect of inclination angle on fiber pullout behavior is also conducted.

  • PDF

$^{13}$C NMR Study of Segmental Motions of n-Heptane in Neat Liquid

  • Min, Buem-Chan;Chang, Sei-Hun;Shin, Kook-Joe;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.354-358
    • /
    • 1985
  • Carbon-13 nuclear spin-lattice relaxation times have been measured over the range of temperature from 213K to 353K for carbons in n-heptane in neat liquid. The experimental data have been analyzed to obtain informations of segmental motions in the chain polymers by employing a model which describes jumps between several discrete states with different lifetimes. The overall reorientation of the molecule is assumed to be isotropic rotational diffusion. From the above analysis the activation energies of each C-C bond reorientation as well as the overall reorientation have been obtained through the Arrhenius-type temperature dependence.