DOI QR코드

DOI QR Code

Rhodium-Catalyzed Reductive Decyanation of Nitriles Using Hydrosilane as a Reducing Agent: Scope, Mechanism and Synthetic Application

  • Tobisu, Mamoru (Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University) ;
  • Nakamura, Ryo (Department of Applied Chemistry, Faculty of Engineering, Osaka University) ;
  • Kita, Yusuke (Department of Applied Chemistry, Faculty of Engineering, Osaka University) ;
  • Chatani, Naoto (Department of Applied Chemistry, Faculty of Engineering, Osaka University)
  • Published : 2010.03.20

Abstract

A rhodium-catalyzed reductive cleavage reaction of carbon-cyano bonds is developed using hydrosilane as a mild reducing agent. A wide range of nitriles, including aryl, benzyl, and $\beta$-hydrogen containing alkyl cyanides are applicable to this decyanation reaction. The method is also applicable to organic synthesis, in which benzyl cyanide is used as a benzyl anion equivalent and a cyano group functions as a removable ortho-directing group.

Keywords

References

  1. Hartwig, W. Tetrahedron 1983, 39, 2609. https://doi.org/10.1016/S0040-4020(01)91972-6
  2. Hauser, C. R.; Hudson, B. E., Jr. Org. React. 1942, 1, 266.
  3. Tsuji, J.; Ohno, K. Synthesis 1969, 157.
  4. Fessard, T. C.; Andrews, S. P.; Motoyoshi, H.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 9331. https://doi.org/10.1002/anie.200702995
  5. Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849. https://doi.org/10.1021/ja0103501
  6. Fessard, T. C.; Motoyoshi, H.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 2078. https://doi.org/10.1002/anie.200604263
  7. Kim, W. H.; Lee, J. H.; Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131, 12576. https://doi.org/10.1021/ja9058926
  8. Goossen, L. J.; Manjolinho, F.; Khan, B. A.; Rodríguez, N. J. Org. Chem. 2009, 74, 2620. https://doi.org/10.1021/jo802628z
  9. Paras, N. A.; Simmons, B.; Mac- Millan, D. W. C. Tetrahedron 2009, 65, 3232. https://doi.org/10.1016/j.tet.2008.12.054
  10. Murahahi, S.-I. In Science of Synthesis; Murahashi, S.-I., Ed.; Thieme: Stuttgart, 2004; Vol. 19, pp 345-402.
  11. Krizan, T. D.; Martin, J. C. J. Am. Chem. Soc. 1983, 105, 6155. https://doi.org/10.1021/ja00357a034
  12. Uchiyama, M.; Koike, M.; Kameda, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. 1996, 118, 8733. https://doi.org/10.1021/ja961320e
  13. Naka, H.; Uchiyama, M.; Matsumoto, Y.; Wheatley, A. E. H.; McPartlin, M.; Morey, J. V.; Kondo, Y. J. Am. Chem. Soc. 2007, 129, 1921. https://doi.org/10.1021/ja064601n
  14. Usui, S.; Hashimoto, Y.; Morey, J. V.; Wheatley, A. E. H.; Uchiyama, M. J. Am. Chem. Soc. 2007, 129, 15102. https://doi.org/10.1021/ja074669i
  15. Kakiuchi, F.; Sonoda, M.; Tsujimoto, T.; Chatani, N.; Murai, S. Chem. Lett. 1999, 28, 1083.
  16. Mattalia, J.-M.; Marchi-Delapierre, C.; Hazimeh, H.; Chanon, M. ARKIVOC 2006, 4, 90
  17. Tobisu, M.; Chatani, N. Chem. Soc. Rev. 2008, 37, 300. https://doi.org/10.1039/b702940n
  18. Nakao, Y.; Hiyama, T. Pure Appl. Chem. 2008, 80, 1097. https://doi.org/10.1351/pac200880051097
  19. Najera, C.; Sansano, J. M. Angew. Chem., Int. Ed. 2009, 48, 2452. https://doi.org/10.1002/anie.200805601
  20. Yu, D.-G.; Yu,-M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. 2009, 11, 3374. https://doi.org/10.1021/ol901217m
  21. Taw, F. L.; White, P. S.; Bergman, R. G.; Brookhart, M. J. Am. Chem. Soc. 2002, 124, 4192. https://doi.org/10.1021/ja0255094
  22. Taw, F. L.; Mueller, A. H.; Bergman, R. G.; Brookhart, M. J. Am. Chem. Soc. 2003, 125, 9808. https://doi.org/10.1021/ja034468o
  23. Nakazawa, H.; Kawasaki, T.; Miyoshi, K.; Suresh, C. H.; Koga, N. Organometallics 2004, 23, 117. https://doi.org/10.1021/om0208319
  24. Nakazawa, H.; Kamata, K.; Itazaki, M. Chem. Commun. 2005, 4004.
  25. Itazaki, M.; Nakazawa, H. Chem. Lett. 2005, 34, 1054. https://doi.org/10.1246/cl.2005.1054
  26. Nakazawa, H.; Itazaki, M.; Kamata, K.; Ueda, K. Chem. Asian J. 2007, 2, 882. https://doi.org/10.1002/asia.200700076
  27. Ochiai, M.; Hashimoto, H.; Tobita, H. Angew. Chem., Int. Ed. 2007, 46, 8192. https://doi.org/10.1002/anie.200703154
  28. Fukumoto, K.; Oya, T.; Itazaki, M.; Nakazawa, H. J. Am. Chem. Soc. 2009, 131, 38. https://doi.org/10.1021/ja807896b
  29. Tobisu, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2006, 128, 8152. https://doi.org/10.1021/ja062745w
  30. Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. J. Am. Chem. Soc. 2008, 130, 15982. https://doi.org/10.1021/ja804992n
  31. Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 134, 3174.
  32. Murata, M.; Ishikura, M.; Nagata, M.; Watanabe, S.; Masuda, Y. Org. Lett. 2002, 4, 1843. https://doi.org/10.1021/ol025770p
  33. YaYamanoi, Y.; Nishihara, H. Tetrahedron Lett. 2006, 47, 7157. https://doi.org/10.1016/j.tetlet.2006.08.001
  34. Murata, M.; Yamasaki, H.; Ueta, T.; Nagata, M.; Ishikura, M.; Watanabe, S.; Masuda, Y. Tetrahedron 2007, 63, 4087.
  35. Yamanoi, Y.; Nishihara, H. J. Org. Chem. 2008, 73, 6671. https://doi.org/10.1021/jo8008148
  36. Denmark, S. E.; Kallemeyn, J. M. Org. Lett. 2003, 5, 3483. https://doi.org/10.1021/ol035288m
  37. Seganish, W. M.; Handy, C. J.; DeShong, P. J. Org. Chem. 2005, 70, 8948. https://doi.org/10.1021/jo051636h
  38. Yamanoi, Y. J. Org. Chem. 2005, 70, 9607.
  39. Hamze, A.; Provot, O.; Alami, M.; Brion, J.-D. Org. Lett. 2006, 8, 931. https://doi.org/10.1021/ol052996u
  40. Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169. https://doi.org/10.1021/cr020007u
  41. Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. https://doi.org/10.1021/cr020022z
  42. Miura, T.; Murakami, M. Chem. Commun. 2007, 217.
  43. Yada, A.; Yukawa, T.; Nakao, Y.; Hiyama, T. Chem. Commun. 2009, 3931.
  44. Forster, S.; Helmchen, G. Synlett 2008, 831.
  45. Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525. https://doi.org/10.1002/adsc.200404223
  46. Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674. https://doi.org/10.1002/anie.200461432
  47. Terao, J.; Kambe, N. Acc. Chem. Res. 2008, 41, 1545. https://doi.org/10.1021/ar800138a
  48. Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656. https://doi.org/10.1002/anie.200803611
  49. Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428. https://doi.org/10.1021/ja067364x
  50. Vyboishchikov, S. F.; Nikonov, G. I. Organometallics 2007, 26, 4160. https://doi.org/10.1021/om070238x
  51. Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
  52. Sorgel, S.; Tokunaga, N.; Sasaki, K.; Okamoto, K.; Hayashi, T. Org. Lett. 2008, 10, 589. https://doi.org/10.1021/ol702879u
  53. Chotana, G. A.; Rak, M. A.; Smith, M. R. III J. Am. Chem. Soc. 2005, 127, 10539. https://doi.org/10.1021/ja0428309
  54. Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2000, 65, 1475. https://doi.org/10.1021/jo991660t
  55. Oi, S.; Ogino, Y.; Fukita, S.; Inoue, Y. Org. Lett. 2002, 4, 1783. https://doi.org/10.1021/ol025851l
  56. Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.; Hayamizu, T.; Chatani, N.; Murai, S. J. Organomet. Chem. 2003, 686, 134. https://doi.org/10.1016/S0022-328X(03)00448-0
  57. Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. https://doi.org/10.1021/ja054549f
  58. Ackermann, L. Org. Lett. 2005, 7, 3123. https://doi.org/10.1021/ol051216e
  59. Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220. https://doi.org/10.1021/ja064481j
  60. Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534. https://doi.org/10.1021/ja8015878
  61. Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. https://doi.org/10.1021/ar700133y
  62. Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502. https://doi.org/10.1021/ja902314v
  63. García-Rubia, A.; Arrayas, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2009, 48, 6511. https://doi.org/10.1002/anie.200902802

Cited by

  1. Rhodium-Catalyzed Carbon-Cyano Bond Cleavage Reactions Using Organosilicon Reagents vol.68, pp.11, 2010, https://doi.org/10.5059/yukigoseikyokaishi.68.1112
  2. Nickel-catalyzed reductive cleavage of aryl–oxygen bonds in alkoxy- and pivaloxyarenes using hydrosilanes as a mild reducing agent vol.47, pp.10, 2011, https://doi.org/10.1039/c0cc05169a
  3. Rhodium(I)-Catalyzed Borylation of Nitriles through the Cleavage of Carbon–Cyano Bonds vol.134, pp.1, 2012, https://doi.org/10.1021/ja2095975
  4. Density Functional Theory Study of N–CN and O–CN Bond Cleavage by an Iron Silyl Complex vol.31, pp.10, 2012, https://doi.org/10.1021/om300232h
  5. Nickel-Catalyzed Cross-Coupling of Arene- or Heteroarenecarbonitriles with Aryl- or Heteroarylmanganese Reagents through CCN Bond Activation vol.354, pp.9, 2012, https://doi.org/10.1002/adsc.201200369
  6. 1,5-Migration of rhodium via C–H bond activation in catalytic decyanative silylation of nitriles vol.48, pp.93, 2012, https://doi.org/10.1039/c2cc36601k
  7. Nickel-catalyzed Hydrodecyanation of Carbon-Cyano Bonds vol.2, pp.2, 2013, https://doi.org/10.1002/ajoc.201200185
  8. Mechanistic Study of Borylation of Nitriles Catalyzed by Rh–B and Ir–B Complexes via C–CN Bond Activation vol.32, pp.3, 2013, https://doi.org/10.1021/om301263s
  9. Nickel-catalyzed decyanation of inert carbon–cyano bonds vol.49, pp.1, 2013, https://doi.org/10.1039/c2cc36883h
  10. Rhodium(i)-catalyzed N–CN bond cleavage: intramolecular β-cyanation of styrenes vol.49, pp.58, 2013, https://doi.org/10.1039/c3cc43597k
  11. Nickel-catalyzed hydrogenolysis of unactivated carbon–cyano bonds vol.49, pp.75, 2013, https://doi.org/10.1039/c3cc44562c
  12. Recent Advances in Transition-Metal-Catalyzed Functionalization of Unstrained Carbon–Carbon Bonds vol.114, pp.17, 2014, https://doi.org/10.1021/cr400628s
  13. –Silyl Complex: A Systematic DFT Study vol.33, pp.12, 2014, https://doi.org/10.1021/om500294b
  14. Rhodium-Catalyzed Borylation of Aryl 2-Pyridyl Ethers through Cleavage of the Carbon–Oxygen Bond: Borylative Removal of the Directing Group vol.137, pp.4, 2015, https://doi.org/10.1021/ja511622e
  15. Metal catalyzed defunctionalization reactions vol.14, pp.1, 2016, https://doi.org/10.1039/C5OB01949D
  16. Nickel/Lewis Acid-Catalyzed Carbocyanation of Unsaturated Compounds vol.85, pp.7, 2012, https://doi.org/10.1246/bcsj.20120081
  17. Theoretical Studies of Rhodium-Catalyzed Borylation of Nitriles through Cleavage of Carbon–Cyano Bonds vol.87, pp.6, 2014, https://doi.org/10.1246/bcsj.20130332
  18. Rhodium-catalyzed Borylation of Aryl and Alkenyl Pivalates through the Cleavage of Carbon–Oxygen Bonds vol.44, pp.3, 2015, https://doi.org/10.1246/cl.141084
  19. catalyst vol.54, pp.28, 2018, https://doi.org/10.1039/C7CC09926F
  20. Integrated Palladium‐Catalyzed Arylation of Heavier Group 14 Hydrides vol.16, pp.45, 2010, https://doi.org/10.1002/chem.201001437
  21. ChemInform Abstract: Rhodium-Catalyzed Reductive Decyanation of Nitriles Using Hydrosilane as a Reducing Agent: Scope, Mechanism and Synthetic Application. vol.41, pp.31, 2010, https://doi.org/10.1002/chin.201031044
  22. Nickel‐Catalyzed CP Cross‐Coupling by CCN Bond Cleavage vol.17, pp.35, 2011, https://doi.org/10.1002/chem.201101930
  23. Rhodium-Catalyzed Carbon–Silicon Bond Activation for Synthesis of Benzosilole Derivatives vol.134, pp.47, 2012, https://doi.org/10.1021/ja3096174
  24. Transformations of X (C, O, N)-CN bonds: cases of selective X (C, O, N)-C activation vol.4, pp.3, 2010, https://doi.org/10.1039/c3ra45178j
  25. The reductive decyanation reaction: an overview and recent developments vol.13, pp.None, 2010, https://doi.org/10.3762/bjoc.13.30
  26. Thiol-Catalyzed Radical Decyanation of Aliphatic Nitriles with Sodium Borohydride vol.20, pp.7, 2010, https://doi.org/10.1021/acs.orglett.8b00626
  27. Reductive Denitration of Nitroarenes vol.20, pp.6, 2010, https://doi.org/10.1021/acs.orglett.8b00430
  28. Nickel-catalyzed reductive defunctionalization of esters in the absence of an external reductant: activation of C-O bonds vol.55, pp.90, 2010, https://doi.org/10.1039/c9cc07710c
  29. Hydrodecyanation of Secondary Alkyl Nitriles and Malononitriles to Alkanes using DiMeImd-BH3 vol.85, pp.9, 2010, https://doi.org/10.1021/acs.joc.0c00105
  30. Methodologies and Strategies for Selective Borylation of C-Het and C-C Bonds vol.120, pp.15, 2010, https://doi.org/10.1021/acs.chemrev.9b00384
  31. Metal-mediated C-CN Bond Activation in Organic Synthesis vol.121, pp.1, 2010, https://doi.org/10.1021/acs.chemrev.0c00301