• Title/Summary/Keyword: Carbon-Reduction Design Elements

Search Result 13, Processing Time 0.028 seconds

A Study on the Development and Effectiveness of Land Use Planning Methods for Carbon Reduction of Transportation : A Case Study of Asan-Tangjeong District (교통부문 탄소배출 저감을 위한 토지이용계획 기법 개발 및 탄소저감 효과검증 : 아산탕정지구를 대상으로)

  • Lee, Woo-Min;Park, Hyo-Sook;Cheon, Choon-Keun;Lee, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.638-645
    • /
    • 2016
  • The purpose of this study was to develop land use planning methods for carbon reduction of transportation and verify the effectiveness. Therefore, this study derived carbon reduction design elements, such as high-density suburb, mixed-use development, pedestrian network and community corridor, which can be applied in the land-use planning stage by examining previous research. The carbon reduction design elements utilized the actual site during the research process. The carbon reductions were estimated using VISUM. Consequently, when carbon reduction design is applied to the site, the carbon emissions declined in the year. As a result of estimating the carbon reduction, approximately 450.7tCO2/yr was reduced.

Analysis of Techniques for Carbon Reduction in Residential Construction (주거건축에서의 탄소저감을 위한 기법 분석)

  • Kim, Minsoo;Lee, Taegoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In order to achieve carbon neutrality in the architectural field by 2050, this study analyzed the energy impact proportional to CO2 emissions of each technique, such as design methods, the properties of building structures, prefabrication methods, passive houses, and active facilities. In addition, the results were presented quantitatively in terms of carbon reduction, and corresponding housing cases were analyzed. The research method is limited to residential buildings at the Passive House energy level, and carbon reduction techniques and elements in architecture are examined through various literature and materials, and empirical cases are analyzed to determine the specific possibility of realizing carbon reduction in architecture. We want to secure it. Based on these analysis results, it was possible to suggest that it is possible to explore various approaches to carbon reduction in future residential construction. By combining the most efficient techniques according to the energy reduction level or goal setting of the building in question, we expect the possibility of achieving the goal of carbon reduction in the residential sector more realistically.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

Designing and Creating a Model Garden to Demonstrate Carbon Reduction - Case Study of Carbon Reduction Model Garden at the Sejong National Arboretum - (탄소저감 현장 실증을 위한 모델정원 설계와 조성 - 국립세종수목원 탄소저감 모델 정원을 사례로 -)

  • Park, Byunghoon;Seo, Jayoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.75-87
    • /
    • 2023
  • This study presents an experimental design for demonstrating the role of nature-based solutions to climate change in the landscape and garden sector. The study suggests spatial strategies for a carbon-neutral society and its role as a cultural industry. This paper describes the use of a low-maintenance garden as part of a strategy for carbon reduction with the goal of protecting the environment and forming a carbon-neutral society. To this end, this study involved the design and construction of a realistic model garden to provide scientific data on the functions, spatial elements, and carbon neutrality of carbon-reducing gardens. The target site is located in the Sejong National Arboretum. The test area in which the carbon-reducing function is measured is located in the centre of the site, and other spaces include dry gardens, community gardens, and flower gardens intended for exhibition and relaxation. The experimental area is divided into several smaller areas within which the carbon-reducing effect is analysed according to the amount of biochar installed, the planting density, and the plant species present. The application of facilities and construction methods to promote carbon reduction were based on the method known as '10 types of carbon gardening for the earth'. In the model garden, we employed rainwater utilization facilities and used low-carbon certified wood and local materials. The carbon reduction effect of each facility and construction method is compared and presented here. The results are expected to serve as an important basis for realizing a carbon-neutral society and can be used as a reference in various fields that require sustainable development, such as the garden industry.

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Analysis of Design Elements and Barriers to Link the Emission Trading Systems between the Republic of Korea and China (한·중 배출권거래제 연계를 위한 설계요소 및 장애요인 분석)

  • Park, Su Gyeong;Park, Soon chul;Song, Cholho;Lim, Chul-Hee;Lee, Soo Jeong;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.471-485
    • /
    • 2018
  • The Republic of Korea (ROK) has made many efforts to reduce greenhouse gases through a legal framework, making obligations to reach domestic and overseas targets via the Paris Convention in 2015. China recently launched a nation-wide emission trading system (ETS) and has considered extending this ETS to include the ROK. This study examines the possibility of linking the ETS between ROK and China by considering the institutional design elements of the ETS. Additionally, this study provides policy implications to reach Korea's overseas reduction target. For the research methodology, the design elements of both the ROK and China policies were analyzed by categorizing their standard design elements based on the International Carbon Action Partnership. This paper focuses on four main barriers (cap type, borrowing, offset and price ceiling) based on their environmental benefits and analyzes the challenges to combining the design elements between the ROK and China systems. The two ETS commonly share the same cap types, and there is similar institutional progress regarding the offset and price ceiling. In addition to this, note that China has a borrowing system that is opposite to the borrowing system in ROK. According to these findings, there are major challenges to linking the ROK and China systems due to differences in the major design elements. Thus, it is necessary to modify the Korean domestic borrowing system and understand the Chinese institutional processes related to environmental negotiation to achieve further cooperation.

Effects of Pb Aaddition on Microstructur and Texture in High Temperature Plane Strain Compression of Magnesium Alloys (마그네슘 합금의 고온 평면변형 압축에서 Pb 첨가에 따른 미세조직 및 집합조직 변화)

  • Yebeen Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • As global warming accelerates, the transportation industry is increasing the use of lightweight materials with the goal of reducing carbon emissions. Magnesium is a suitable material, but its poor formability limits its use, so research is needed to improve it. Rare-earth elements are known to effectively control texture development, but their high cost limits commercial. In this study, changes in microstructure and texture were investigated by adding Pb, which is expected to have a similar effect as rare-earth elements. The material used is Mg-15wt%Pb alloy. Initial specimens were obtained by rolling at 773 K to a rolling reduction of 25% and heat treatment. Afterwards, plane strain compression was performed at 723 K with a strain rate of 5×10-2s-1 and a strain of -0.4 to -1.0. As a result, recrystallized grains were formed within the microstructure, and the main component of the texture changed from (0,0) to (30,26). The maximum axial density was initially 10.01, but decreased to 4.23 after compression.

Numerical Analysis of Deck Frame for Lightweight Trucks (트럭경량화를 위한 Deck Frame의 수치해석 연구)

  • Yun, Sung-Woo;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.127-133
    • /
    • 2018
  • To reduce fuel consumption, research on the weight reduction of vehicles is being actively carried out. Researchers have typically tried to replace metal materials with composites materials, but these materials did not satisfy the required strength and rigidity of a vehicle. Composites are usually not used because of their high cost. There are incomplete studies on lightweight trucks that transport cargo. Therefore, in this paper, we enhance the lightness and mechanical strength through design optimization of the deck frame for a lightweight truck. For that purpose, the side member and cross member, which are mounted on the lower part of the truck to assure the safety of the vehicle and support the luggage load, were targeted. The result of numerical analysis on the safety of the frame was obtained by changing the shape of each cross-section. To verify the numerical analysis, we compared it with the theoretical value of a cantilever beam. As a result, the suitability of the cross-sectional shapes of each frame was confirmed through numerical analysis.

Analysis of the Impact of Key Design Elements for the EU-ETS Phase 4 on the K-ETS in the Future (EU ETS 4기의 주요 제도 설계가 향후 국내 배출권거래제 운영에 미칠 영향 분석)

  • Son, Insung;Kim, Dong Koo
    • Environmental and Resource Economics Review
    • /
    • v.30 no.1
    • /
    • pp.129-167
    • /
    • 2021
  • The emission trading system is an essential policy for reducing greenhouse gas emissions and converting low-carbon society. EU ETS is a good benchmark that is ahead of Korea's emission trading system in terms of operating period and design know-how. Therefore, this study focused on the key design elements of EU ETS phase 4 such as total emission allowances issued (Cap), free allocation method, carbon leakage list, market stability reserve, and innovation supporting system. In addition, we analyzed the impact of key design elements and their changes during EU ETS Phase 1 to 4 on the design and operation of Korea emission trading system in the future. First of all, the expected impact on the design of Korea emission trading system is to increase three demands: preparing benchmark renewal plans, establishing criteria for selecting free allocation industries that reflect domestic industrial structure and characteristics and introducing two-stage evaluations for free allocation industries, and preparing specific plan to support innovation and industries using allowance auction revenues. The next three impacts on the operation of Korea emission trading system are the increased needs for objective and in-depth impact assessment of plan and amendments, provision of system stability and response opportunities by quickly confirming plan and amendments prior to the implementation, and coordination of the emission trading system governance and stakeholder participation encouragement.

Study on Forestry-Based Carbon Offset Programs (산림을 이용한 탄소상쇄 프로그램의 해외 사례 고찰)

  • Lee, Seung-Eun
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.97-107
    • /
    • 2010
  • A forest project for the sequestration of carbon dioxide helps to reduce the concerntration of greenhouse gas in atmosphere and provides various co-benefits. A lot of forestry-based carbon offset programs have been developing for the purpose of CSR(Corporate Social Responsibility), voluntary GHG emission reduction, and regulatory context etc. in worldwide. We studied major characteristics - project type and criteria, additionality, credits, permanence, carbon accounting and monitoring, co-benefit - of advanced forest carbon offset programs. Also, we tried to comprehend the direction and basic elements to design a domestic program.