• Title/Summary/Keyword: Carbon-Phenolic

Search Result 199, Processing Time 0.028 seconds

Failure Prediction of Thermo-Chemically Decomposing Composite for Rocket Thermal Insulators (열경화성 복합재 로켓 방화벽의 파손 예측)

  • Lee, Sun-Pyo;Lee, Jung-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.25-31
    • /
    • 2005
  • The theory developed in a preceding paper [1] for poroelastic composite material behavior under thermal and gas diffusion is applied to thermo-chemical decomposition of a carbon-phenolic composite rocket nozzle liner under typical operating conditions. Specifically, the structural component simulated is the cowl ring for which distributions of pressure in the material pores, temperature and across-ply stress are presented. The results for particular composite designs show that across-ply failure occurs due to tensile stress in the material which is indicative of plylift. This prediction corroborates observations of plylift in a nozzle cowl. Simulations suggest designs to avoid plylift in the cowl zone.

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

Microstructure and Ablation Performance of CNT-phenolic Nanocomposites (삭마 효과에 대한 CNT-페놀 나노복합재료의 미세구조 분석)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.309-314
    • /
    • 2013
  • Highly ablation resistant carbon nanotube (CNT)-phenolic composites were fabricated by the addition of low concentrations of CNT nanofiller. Tensile and compressive properties as well as ablative resistance were significantly improved by the addition of only 0.1 and 0.3 wt% of uniformly dispersed CNTs. An oxygen-kerosene-flame torch and a field emission scanning electron microscope (FE-SEM) were used to evaluate the ablative properties and microstructures of these CNT-phenolic composites. Thermal gravimetric analysis (TGA) revealed that the ablation rate was lower for the 0.3 wt% CNT-phenolic composites than for neat phenolic or the composite with 0.1 wt% CNT. Ablative mechanisms for all three materials were investigated using this TGA in conjunction with microstructural studies using a FE-SEM. The microstructural studies revealed that CNT acted as an ablation resistant phase at high temperatures, and that the uniformity of dispersion of the CNT played an important role in this resistance to ablation.

Improved Bioethanol Production Using Activated Carbon-treated Acid Hydrolysate from Corn Hull in Pachysolen tannophilus

  • Seo, Hyeon-Beom;Kim, Seung-Seop;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • To optimally convert corn hull, a byproduct from corn processing, into bioethanol using Pachysolen tannophlius, we investigated the optimal conditions for hydrolysis and removal of toxic substances in the hydrolysate via activated carbon treatment as well as the effects of this detoxification process on the kinetic parameters of bioethanol production. Maximum monosaccharide concentrations were obtained in hydrolysates in which 20 g of corn hull was hydrolyzed in 4% (v/v) $H_2SO_4$. Activated carbon treatment removed 92.3% of phenolic compounds from the hydrolysate. When untreated hydrolysate was used, the monosaccharides were not completely consumed, even at 480 h of culture. When activated carbon.treated hydrolysate was used, the monosaccharides were mostly consumed at 192 h of culture. In particular, when activated carbon-treated hydrolysate was used, bioethanol productivity (P) and specific bioethanol production rate ($Q_p$) were 2.4 times and 3.4 times greater, respectively, compared to untreated hydrolysate. This was due to sustained bioethanol production during the period of xylose/arabinose utilization, which occurred only when activated carbon-treated hydrolysate was used.

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of Carbon Fabrics (하이브리드화에 의한 탄소 직물 복합재료의 역학적 특성 및 열적 특성)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.18-24
    • /
    • 2007
  • The mechanical and thermal properties of PAN-based/rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties including tensile and interlaminar shear strengths were improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate and insulation index were determined through the torch test. Continuous rayon-based carbon fabrics composite indicated relatively low ablation resistant property. The thermal conductivity of hybrid composite of spun PAN-based/continuous rayon-based carbon fabrics is lower than that of the continuous PAN-based carbon fabrics composite.

Synthesis of Resole-type Phenolic Beads via Suspension Polymerization Technique (현탁중합을 이용한 레졸형 구형 페놀입자의 합성)

  • Hahn, Dongseok;Kim, Daejung;Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.279-284
    • /
    • 2013
  • The phenolic beads in macrosize range were obtained by suspension polymerization at $98^{\circ}C$ from phenol and formaldehyde in the presence of basic catalyst with a phenol to formaldehyde (P/F) range of 1:1~1:4, and they were carbonized to spherical carbon beads under nitrogen at $700^{\circ}C$. Thermal analysis on spherical phenolic beads obtained by suspension polymerization showed that the postcuring process is essential. In order to optimize the suspension polymerization, the effects of the P/F molar ratio, the pH of catalyst, and the molecular weight of stabilizer on the size distribution and yield of spherical phenol beads were examined separatively. The particle size was increased whereas the yield was decreased with P/F molar ratio. The increasing basicity of catalyst made the particle size to increase, while the molecular weight of stabilizer had more effect on the yield rather than on the particle size distribution. The thermal stability of the spherical phenolic beads obtained through postcure was also examined by TGA. The phenol beads of high P/F ratio still showed the weight loss at $220^{\circ}C$ even after postcure due to the high possibility of dibenzyl ether, while those of low P/F ratio showed the steady decrease in weight during $220^{\circ}C$ to $400^{\circ}C$, which showed that the optimal P/F ratio was 1:2.

Influence of Activation Temperature on Surface and Adsorption Properties of PAN-based Activated Carbon Fibers/Phenolic Resin Matrix Composites (활성화 온도에 의한 PAN계 활성탄소섬유/페놀수지 복합재료의 표면 및 흡착특성)

  • 박수진;김기동;이재락
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.97-104
    • /
    • 2000
  • PAN-based activated carbon fibers/phenolic resin matrix composites (ACFCs) were manufactured via molding process with oxidized carbon fabrics (plain-type) and phenolic resin (resole-type) compounded by 70 : 30 wt%. The green body (as molded) was submitted to carbonization (at 100$0^{\circ}C$) in an inert environment and activation (at 700, 800, 900 and 100$0^{\circ}C$) in a $CO_2$ environment. In this work, the influence of activation temperatures was investigated in surface properties, such as pH, acid- and base-values by titration method, and in adsorption properties, i.e., specific surface area and pore structures by BET-method of the composites. Also, the pressure drops of the specimens were calibrated by ASTM. As a result, the activation temperature influenced the surface property of ACFCs. When the activation temperature was higher than 90$0^{\circ}C$, the surface was gradually developed in basic nature. And, the evolutions of specific surface area, total pore volume and pore size distribution of ACFCs could be easily confirmed the dependence on the activation temperature. Among them, well-developed pore structure from adsorption characteristics was changed of the ACFCs activated at 90$0^{\circ}C$. Also, the pressure drop was slightly decreased with increasing the temperature due to increasing the burn-off with heat treatment temperature of ACFCs.

  • PDF

Errects of the Length of Carbon Fiber on the Wear Properties of Carbon/Carbon Composites (탄소/탄소 복합재료의 마모특성에 대한 탄소섬유 길이의 영향)

  • Ha, Hun-Seung;Kim, Dong-Kyu;Park, In-Seo;Im, Yeon-Su;Yun, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.292-299
    • /
    • 1993
  • In this paper the effects of the length of carbon fiber on the wear properties of carboni carbon composites were investigated. Carbon/carbon composites were fabricated by the liquid impregnation method using the resol-type phenolic resin as a matrix precursor and PAN-based, non-surface treated carbon fiber as a reinforcement. The measured values of the friction coefficient of carbon/carbon composites against AlSl 304 stainless steel ranged from 0.2 to 0.3 under the operating condition used in this study. The effect of the length of carbon fiber on the friction coefficient of carbon/carbon composites were not found. But, it was realized that the wear rate of carbon/carbon composites tends to increase, as the length of carbon fiber increases.

  • PDF

Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements (저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성)

  • Yang, Jae-Yeon;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.412-420
    • /
    • 2018
  • In this work, phenolic resins containing conductive carbon fillers, such as, petroleum coke, carbon black, and graphite, were used to improve the surface heating elements by impregnating a pitch-based carbon paper. The influence of conductive carbon fillers on physicochemical properties of the carbon paper was investigated through electrical resistance measurement and thermal analysis. As a result, the surface resistance and interfacial contact resistivity of the carbon paper were decreased linearly by impregnating the carbon fillers with phenol resins. The increase of carbon filler contents led to the improvement of electrical and thermal conductivity of the carbon paper. Also, the heating characteristics of the surface heating element were examined through the applied voltage of 1~5 V. With the applied voltage, it was confirmed that the surface heating element exhibited a maximum heating characteristic of about $125.01^{\circ}C$(5 V). These results were attributed to the formation of electrical networks by filled micropore between the carbon fibers, which led to the improvement of electrical and thermal properties of the carbon paper.

Tribological behaviors of polymer coated carbon composite with small surface grooves (코팅된 요철표면을 가지는 탄소/에폭시 복합재료의 마찰 및 마모 특성)

  • Kim, Seong-Su;Lee, Hak-Gu;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.107-110
    • /
    • 2005
  • Tribological behaviors of carbon epoxy composites whose surfaces have many small grooves were compared with respect to coating method under dry sliding and water lubricating conditions. The surface coating materials were epoxy (Ep) and polyethylene (PE) mixed with self-lubricating $MoS_2$ and PTFE powders. The wear morphology of the composites observed with a scanning electron microscopic (SEM) revealed that the surface coating layer mixed with the self-lubricating powder on the grooved surface significantly improved the wear resistance under water lubricating condition because the surface coating layer blocked water to penetrate the composite surface and the self-lubricating powder reduced the wear on the coating by suppressing the generation of blisters.

  • PDF