• Title/Summary/Keyword: Carbon-Neutral Society

Search Result 270, Processing Time 0.028 seconds

Modeling of Torrefaction process for agro-byproduct I : Rate constant & mass reduction model (농업부산물 반탄화 공정 예측 모델 I : 반응속도 상수 도출 및 질량감소 모델 정립)

  • Park, Sun Young;Lee, Sang Yeol;Joo, Sang Yeon;Cho, La Hoon;Oh, Kwang Cheol;Lee, Seo Hyeon;Jeong, In Seon;Lee, Chung Geon;Kim, Dae Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.32-32
    • /
    • 2017
  • 2012년부터 도입된 "신재생에너지 의무할당제(RPS)"로 인하여 500MW이상의 설비 용량을 갖춘 발전소의 경우 총발전량에서 일정 비율을 신재생에너지로 공급하여야 한다. 이러한 신재생에너지 중 농업부산물은 목질계 바이오매스의 한 종류로 '탄소중립(Carbon Neutral)' 연료이며 기존 화석연료와 혼소로 활용 할 수 있는 장점을 지니고 있다. 그러나 낮은 발열량, 운송 및 저장비용, 일정하지 않은 연소특성의 문제로 인하여 대부분 노지에 방치되거나 버려지고 있다. 이러한 버려지는 농업부산물을 효율적으로 활용하기 위한 방법 중 하나로 반탄화(Torrefacation) 처리가 대두되고 있다. 반탄화 처리 시, 발열량이 증대되며, 저장과 이송에서의 이점을 갖게 된다. 그러나, 반탄화는 공정 과정중 질량손실에 따른 에너지 총량의 감소한다는 단점을 가지고 있다. 이에 본 연구에서는 효율적인 반탄화공정을 위한 질량감소모델을 제시 하고자한다. 승온 속도(heating rate)를 $7.5^{\circ}C/min$, $15^{\circ}C/min$, $22.5^{\circ}C/min$의 조건에서의 열중량분석 결과를 토대로 속도모델식(Arrhenius method, Ingraham & Marrier method 등)을 적용하여, 반응속도상수를 도출하였다. 이 반응속도상수를 이용하여 질량감소 모델을 정립하였고, 이를 실험결과와 비교, 검증하였다.

  • PDF

Evaluation and Selection Method of Best Available Techniques for Integrated Environmental Management System (통합환경관리제도 운영을 위한 최적가용기법 평가·선정기법 연구)

  • Park, Jae Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.348-358
    • /
    • 2017
  • The process of evaluating and selecting the best available techniques presents various characteristics for each country. In the case of EU, BAT is selected through TWG meeting after first screening, mass and energy balance, impact assessment and decision support process. Korea has proposed four principles to select BAT that can be carbon neutral for each environmental infrastructure in order to reduce greenhouse gas emissions. In order to evaluate and select the best available technique, it is necessary to differentiate the method according to whether it is a technique generally applied at the current workplace, whether it is a single technique or a combination technique, and whether it is a technology technique or management technique. In the case of a single technique, it should be evaluated whether it is a technique applied in the workplace, excessive cost, superior environmental technique over BAT, and secondary environmental pollution. In the case of multiple techniques, it is necessary to examine whether the emission standards are met and whether the pollutants can be treated at the same level as BAT. In the case of BAT candidates for management techniques, whether or not they contribute directly or indirectly to lowering the emission level of pollutants can be an important evaluation item. In the case of environmental techniques that are not generally applied in the workplace, it is recommended that the following 8 steps be carried out, including those prescribed by law. In the first stage, the list of performance evaluation factors is listed. In the second stage, the level of disposal of pollutants and the level of satisfaction with standards are listed. In the third stage, the environmental evaluation elements are listed. In the fourth stage, Is to list the economic evaluation elements, step 6 is to list the pollution and accident prevention evaluation factors, step 7 is the quantitative evaluation of the technical working group, and step 8 is BAT confirmation through deliberation of the central environmental policy committee.

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

Effect of Organic Acids Fermented from the Settled Sludge and Animal Organic Wastes on the Denitrification (침전 슬러지와 가축분의 유기산화 및 발효유기산이 탈질반응에 미치는 영향)

  • Weon, Seung-Yeon;Park, Seung-Kook;Min, Kyung-Kook;Chung, Keun-Yook;Jun, Byong-Hee;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2005
  • Fermentation efficiencies of organic wastes from the variety of sources were evaluated based on the production of total volatile acids(TVA) in batch reactor. Mixing and pH were not significant factors in producing TVA from the organic wastes. After a 10-day fermentation, final TVA concentrations in piggery, cattle, poultry, and primary settled sludge of domestic wastewater were 8,900, 2,900, 7,370 and 1,630 mg/L, respectively. The pH of organic wastes was decreased from neutral to 5.7. The ratio of TVA to $NH_4{^+}-N$ produced from the animal waste ranged from 11.5 to 30.1, whereas, that in the primary settled sludge of domestic wastewater, was 5.4. Possibility of fermented organic wastes as the electron donors for denitrification in the activated sludge was investigated. In both acclimated and nonacclimated activated sludge, higher denitrification rates were obtained with fermented piggery sludge added than with either methanol or acetate added. The fermented organic acids derived from the primary settled sludge gave the higher denitrification rate ($4.2mg\;NO_3-N/g\;vss{\cdot}hr$) in the acclimated activated sludge. Denitrification rate was $1.5mg\;NO_3-N/g\;vss{\cdot}hr$ in the nonacclimated sludge with the fermented acids from the primary settled sludge of domestic wastewater added.

Nutrient Digestibility and Greenhouse Gas Emission in Castrated Goats (Capra hircus) Fed Various Roughage Sources (조사료원 종류가 거세 염소(Capra hircus)의 영양소 소화율 및 온실가스 발생량에 미치는 영향)

  • Na, Youngjun;Hwang, Seokjin;Choi, Yongjun;Park, Geetae;Lee, Sangrak
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.39-43
    • /
    • 2018
  • The objective of this study was to determine the effect of various roughage sources on nutrient digestibility and enteric methane ($CH_4$), and carbon dioxide ($CO_2$) production in goats. Four castrated black goats ($48.5{\pm}0.6kg$) were individually housed in environmentally controlled respiration-metabolism chambers. The experiment design was a $4{\times}4$ balanced Latin square design with 4 roughage types and 4 periods. Alfalfa, tall fescue, rice straw, and corn silage was used as representative of legume, grass, straw, and silage, respectively. Dry matter digestibility was higher (p < 0.001) in corn silage than in alfalfa hay. Dry matter digestibility of alfalfa hay was higher than those of tall fescue or rice straw (p < 0.001). Neutral detergent fiber digestibility of tall fescue was lower (p < 0.001) than those of alfalfa, rice straw, or corn silage. Daily enteric $CH_4$ production and the daily enteric $CH_4$ production per kilogram of $BW^{0.75}$, dry matter intake (DMI), organic matter intake (OMI), digested DMI, and digested OMI of rice straw did not differ from those of tall fescue but were higher (p < 0.001) than those of alfalfa or corn silage. Roughage type had no effect on enteric $CO_2$ emission in goats. Straw appeared to generate more enteric $CH_4$ production than legume or silage, but similar to grass.

Economic Feasibility of Forest Biomass Thermal Energy Facility Using Real Option Approach (실물옵션법을 이용한 산림 바이오매스 열공급 시설의 투자 분석)

  • An, Hyunjin;Min, Kyungtaek
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • The energy use of forest biomass is crucial to deal with climate change and achieve the carbon-neutral goal. This study aims to analyze the economic feasibility of forest biomass thermal energy facilities and calculate the optimal subsidy level of heat supply to ensure continued operation of the facilities. To achieve this aim, the net present value approach (NPV) and call option price model are adopted considering wood chip price volatilities. The Forest Energy Self-Sufficient Village Project financed by Korea Forest Service is considered as the research case study. In our analysis, when 50% of the initial investment is given to the subsidies and RECs are applied to only power generation, NPV and IRR are both negative and the investment value using the real option model is also zero. We concluded that some heat subsidies should be acknowledged to keep the facilities operating. Besides, the simulation results reveal reliable economic values when the heating subsidy is priced at KRW 0.0248 per kcal.

A Study on Applying PID Control to a Downdraft Fixed Bed Gasifier using Wood Pellets

  • Park, Bu-Gae;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.149-159
    • /
    • 2022
  • Biomass is material that is comprehensive of carbonaceous materials from plants, crops, animals, and algae. It has been used as one of heating fuel since the beginning the emergence of human beings. Since biomass is regarded as carbon-neutral energy source, it has recently been attracting attention as an energy source that can replace fossil fuels. The most widely applied field is distributed power generation, and a method of generating electric power by driving an internal combustion engine with syngas produced by gasifier is chosen. While the composition of the syngas produced in gasifiers changes depending on the air flowing into the reactor, commercialized gasifiers so far do not control the air flowing into the reactor. When the inner pressure in reactor increases, the air sucked into the reactor is reduced. That change of amount of air makes the composition of syngas varied. Those variations of composition of syngas cause the incomplete combustion hence the power output of engine drops, which is a critical weakness of the gasification technology. In this paper, to produce the uniformly composed syngas, PID control is applied. The result was shown when the amount of air into the reactor is supplied with the constant amount using PID control, the standard deviation of caloric values of syngas is around 2[%] of its average value. Meanwhile the gasifier without PID control has the standard deviation of caloric values is around 7[%]. Therefore, Adopting PID control to supply constant air to the gasifier is highly desirable.

Analysis of Electrochemical Performance of Reduced Graphene Oxide based Symmetric Supercapacitor with different Aqueous Electrolytes

  • Ravi, Sneha;Kosta, Shivangi;Rana, Kuldeep
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2022
  • Carbon nanomaterials are considered to be the materials of choice for the fabrication of electrochemical energy storage devices due to their stability, cost-effectiveness, well-established processing techniques, and superior performance compared to other active materials. In the present work, reduced graphene oxide (rGO) has been synthesized and used for the fabrication of a symmetric supercapacitor. The electrochemical performance of the fabricated supercapacitors with three different aqueous electrolytes namely 0.5 M H2SO4, 0.5 M H3PO4, and 1.0M Na2SO4 have been compared and analyzed. Among the three electrolytes, the highest areal specific capacitance of 14 mF/cm2 was calculated at a scan rate of 5 mV/s observed with 0.5M H3PO4 electrolyte. The results were also confirmed from the charge/discharge results where the supercapacitor with 0.5M H3PO4 electrolyte delivered a specific capacitance of 11 mF/cm2 at a current density of 0.16 mA/cm2. In order to assess the stability of the supercapacitor with different electrolytes, the cells were subjected to continuous charge/discharge cycling and it was observed that acidic electrolytes showed excellent cyclic stability with no appreciable drop in specific capacitance as compared to the neutral electrolyte.

Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel (한국의 산림바이오매스에너지 중장기 수요-공급전망과 화석연료 대체효과 분석)

  • Lee, Seung-Rok;Han, Hee;Chang, Yoon-Seong;Jeong, Hanseob;Lee, Soo Min;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • This study analyzed the anticipated supply-and-demand of forest biomass energy (through wood pellets) until 2050, in South Korea. Comparing the utilization rates of forest resources of five countries (United Kingdom, Germany, Finland, Japan, and S. Korea), it was found that S. Korea does not nearly utilize its forest resources for energy purposes. The total demand for wood pellets in S. Korea (based on a power generation efficiency of 38%) was predicted to be 3,629 and 4,371 thousand tons in 2034 and 2050, respectively. The anticipated total wood pellet power generation ratio to target power consumption is 1.13% (5,745 GWh), 1.17% (6,336 GWh), and 1.25% (7,631 GWh) in 2020, 2030, and 2050, respectively. Low value-added forest residues left unattended in forests are called "Unused Forest Biomass" in S. Korea. From the analysis, the total annual potential amount of raw material, sustainably collectible amount, and available amount of wood pellet in 2050 were estimated to be 6,877, 4,814, and 3,370 thousand tons, respectively. The rate of contribution to Nationally Determined Contributions was up to 0.64%. Through this study, the authors found that forest biomass energy will contribute to a carbon neutral society in the near future at the national level.

Analysis of Volatile Compounds, Produced in a Glucose Solution Fermented by Saccharomyces bayanus, during Fermentation and Conservation of Fermented Solution 1. Neutral Fraction (Saccharomyces bayanus에 의한 Glucose 용액의 발효중 생성된 휘발성 성분과 저장중 이 성분들의 분석 1. 중성분획)

  • 정숙현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.956-963
    • /
    • 1995
  • Twenty esters, 14 alcohols, 5 aldehydes, 5 ketones, 5 lactones, 2 S-containing compounds and 1 hydrocarbon are identified by GC-MS from volatile compounds in a glucose solution containing Yeat-Carbon-Base medium fermented for 64 hrs by Saccharomyces bayanus at pH 3.5, $25^{\circ}C$, 400rpm and 35L/h of aeration for 24hrs. Under the different conditions of conservation(1~4), ethyl 2-hydroxy-4-metjhylpentanoate, ethyl succinate, nonanol and phenylacetaldehyde are produced during conservation of fermented solution. 17 esters increased during conservation at $13^{\circ}C$ for 12 weeks and the increase of ethyl 9-hexadecenoate is important among 13 esters increased during conservation at $35^{\circ}C$ for 24hrs. During conservation, aldehydes increased at $35^{\circ}C$, but decreased at $13^{\circ}C$ and the great increase of isobutanal, benzaldehyde and phenylacetaldehyde is observed at $35^{\circ}C$. Alcoho and lactones increased but ketones decreased during conservation.

  • PDF