• Title/Summary/Keyword: Carbon-Fiber/Epoxy

Search Result 477, Processing Time 0.021 seconds

Cut-off Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소 섬유 에폭시 복합재료의 절단 연삭 특성)

  • Kim, Po-Jin;Choe, Jin-Gyeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.338-346
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites are frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements . During the composite machining operations such as cutting and grinding, the temperature at the cutting point may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the cutting point during cut-off grinding of carbon fiber epoxy composites was measured. The cutting force and surface roughness were also measured to investigate the cut-off grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed and feed rate. From the experimental investigation, the optimal conditions for the composite cut-off grinding were suggested.

Interlaminar Shear Strength of Carbon Fiber Epoxy Composite with Nickel Film (니켈 박막 첨가에 따른 탄소섬유 에폭시 복합재료의 층간 계면 특성)

  • Lee, Min-Kyung
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.94-98
    • /
    • 2015
  • This paper reports the effects of nickel film interleaves on the interlaminar shear strength(ILSS) of carbon fiber reinforced epoxy composites(CFRPs). A nickel thin film was deposited onto the prepreg by radio frequency(RF) sputtering at room temperature. The ILSS of the nickel film interleaved hybrid composites was increased compared to that of the composites without interleaves. To understand the mechanism of enhancement of the ILSS, the fracture surface of the tested specimens was examined by scanning electron microscopy(SEM). The metal interleaves were acted as a reinforcement for the matrix rich interface and the shear property of their composites improved by enhancing the resistance to matrix cracking.

A Study on the Fracture Behavior of Laminated Carbon/Epoxy Composite by Acoustic Emission (음향방출법을 이용한 적층복합재료의 파괴거동 연구)

  • Oh, Jin-Soo;Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.326-333
    • /
    • 2010
  • In this study, DAQ and TRA modules were applied to the CFRP single specimen testing method using AE. A method for crack identification in CFRP specimens based on k-mean clustering and wavelet transform analysis are presented. Mode I on DCB under vertical loading and mode II on 3-points ENF testing under share loading have been carried out, thereafter k-mean method for clustering AE data and wavelet transition method per amplitude have been applied to investigate characteristics of interfacial fracture in CFRP composite. It was found that the fracture mechanism of Carbon/Epoxy Composite to estimate of different type of fractures such as matrix(epoxy resin) cracking, delamination and fiber breakage same as AE amplitude distribution using a AE frequency analysis. In conclusion, the presented results provide a foundation for using wavelet analysis as efficient crack detection tool. The advantage of using wavelet analysis is that local features in a displacement response signal can be identified with a desired resolution, provided that the response signal to be analyzed picks up the perturbations caused by the presence of the crack.

Properties of Conductive Polymer Composite Films Fabricated under High Intensity Electric Fields : Effect of CF Sizing Treatment (고전기장을 이용한 전도성 고분자 복합필름의 제조 및 특성 연구 : 탄소섬유 Sizing처리가 탄소섬유/폴리에틸렌 필름의 특성에 미치는 영향)

  • 고현협;김중현;임순호;김준경;최철림
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.293-301
    • /
    • 2001
  • Electrically conductive carbon fiber/high density polyethylene (CF/HDPE) composite films were fabricated by new method, so called electron-ion technology (EIT) and the effects of CF epoxy sizing on the volumetric resistivity. tensile strength and interphase properties of the films were investigated. While epoxy sizing increased conductivity of composite films resulting from enhanced tunneling effect it reduced interphase adhesion between CF and HDPE because polar epoxy sizing and nonpolar HDPE are incompatible. Consequently epoxy sized CF(CF(S)) caused significant reduction in the volumetric resisitivity and tensile strength of composite films when compared with unsized CF(CF(U)). Epoxy sizing reduced nucleating efficiency of CF(S), therefore CF(S)/HDPE composite films showed nonuniform transcrystalline layer when compared with CF(U)/HDPE composite films.

  • PDF

Two-Layered Microwave Absorber of Ferrite and Carbon Fiber Composite Substrate

  • Han-Shin Cho;Sung-Soo Kim
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.64-67
    • /
    • 1998
  • Microwave absorbing properties of ferrite-epoxy composite (absorbing layer) attached on the carbon fiber polymer composite (reflective substrate) are analyzed on the basis of wave propagation theory. A modified equation for wave-impedance-matching at the front surface of absorbing layer including the effect of electrical properties of the quasi-conducting substrate is proposed. Based on this analysis, the frequency and layer dimension that produce zero-reflection can be estimated from the intrinsic material properties of the obsorbing layer and the substrate. It is demonstrated that the microwave reflectivity of carbon fiber composite has a strong influence on the microwave absorbance of front magnetic layer.

  • PDF

Interfacial Properties and Microfailure Mechanisms of Electrodeposited Carbon Fiber/epoxy-PEI Composites by Microdroplet and Surface Wettability Tests (Microdroplet 시험법과 Surface Wettability 측정을 이용한 전기증착된 탄소섬유 강화 Epoxy-PEI 복합재료의 계면물성과 미세파괴 메카니즘)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.153-157
    • /
    • 2001
  • Interfacial properties and microfailure modes of electrodeposition (ED) treated carbon fiber reinforced polyetherimide (PEI) toughened epoxy composite were investigated using microdroplet test and the measurement of surface wettability. As PEI content increased, Interfacial shear strength (IFSS) increased due to enhanced toughness and plastic deformation of PEI. In the untreated case, IFSS increased with adding PEI content, and IFSS of pure PEI matrix showed the highest. On the other hand, for ED-treated case IFSS increased with PEI content with rather low improvement rate. The work of adhesion between fiber and matrix was not directly proportional to IFSS for both the untreated and ED-treated cases. The matrix toughness might contribute to IFSS more likely than the surface wettability. Interfacial properties of epoxy-PEI composite can be affected efficiently by both the control of matrix toughness and ED treatment.

  • PDF

Development of Carbon Continuous-fiber Composite Frame for Automotive Sun-roof Assembly (자동차용 탄소 연속섬유 복합재 선루프 프레임의 개발에 대한 연구)

  • Kim, Jinbong;Kim, Kyoung-Deok;Kim, Sungjin;Shin, Dongwan;Kim, Dukki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.350-359
    • /
    • 2017
  • This paper presents a new holistic development approach for the carbon continuous-fiber composite frame of an automotive sunroof assembly. The original steel frame has been designed to get higher bending stiffness with its corrugated cross-sectional shape. The new approach uses the prepregs of a fast cure epoxy and PCM manufacturing processing. For higher productivity, the new frames feature a very simple plat cross sectional shape but achieve high bending stiffness through the laminate design. The sandwich structure with a PET foam core was presented. The frames were made of carbon UD laminae covered single carbon fabric on the outer surfaces. The fabrics provide torsional stiffness and also hold the carbon UD fibers floating in the low viscous epoxy resin of prepregs at the curing temperature during processing. The final product yields approximately 18 % savings in weight compared with the original.

Influence of MWCNTs on Fracture Toughness of MWCNTs/Nickel-Pitch Fiber/Epoxy Composites

  • Yim, Yoon-Ji;Park, Soo-Jin
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.361-365
    • /
    • 2015
  • The influence of MWCNTs on fracture toughness properties of MWCNTs/Nickel-Pitch Fibers/epoxy composites (MWCNTs/Ni-PFs/epoxy) was investigated according to MWCNTs content. Nickel-Pitch-based carbon fibers (Ni-PFs) were prepared by electroless nickel-plating. The surface properties of Ni-PFs were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectrometry (XPS). The fracture toughness of MWCNTs/Ni-PFs/epoxy was assessed by critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$). From the results, it was found that the fracture toughness properties of MWCNTs/Ni-PFs/epoxy were enhanced with increasing MWCNTs content, whereas the value decreased above 5 wt.%. MWCNTs content. This was probably considered that the MWCNTs entangled with each other in epoxy due to an excess of MWCNTs.

A study on the Interfacial Properties of Electrodeposited Single Carbon Fiber/Epoxy Composites Using Tensile and Compressive Fragmentation Tests

  • Park, Joung-Man;Kim, Jin-Won
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests. A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber appeared under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission (전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능)

  • 김대식;박종만;김태욱
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2004
  • Nondestructive damage sensitivity of carbon nanotube(CNT) and nanofiber (CNF)/epoxy composites with their adding contents was investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison with CNT and CNF. The fracture of carbon fiber was detected by acoustic emission (AE), which was correlated to the change in electrical resistance, ΔR under double-matrix composites (DMC) test. Stress sensing on carbon nanocomposites was performed by electro-pullout test under uniform cyclic loading. At the same volume fraction, the damage sensitivity for fiber fracture, matrix deformation and stress sensing were highest for CNT/epoxy composite, whereas for CB/epoxy composite they were the lowest among three carbon nanomaterials (CNMs). Damage sensitivity was correlated with morphological observation of carbon nanocomposites. Homogeneous dispersion among CNMs could be keying parameters for better damage monitoring. In this study, damage sensing of carbon nanocomposites could be evaluated well nondestructively by the electrical resistance measurement with AE.