• 제목/요약/키워드: Carbon yield

Search Result 1,167, Processing Time 0.032 seconds

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

Study for grain-filling of rice using 13C labeling flow-metabolome analysis

  • Okamura, Masaki;Hirai, Masami Yokota;Sawada, Yuji;Okamoto, Mami;Arai-Sanoh, Yumiko;Yoshida, Hiroe;Mukouyama, Takehiro;Adachi, Shunsuke;Fushimi, Erina;Yabe, Shiori;Nakagawa, Hiroshi;Kobayashi, Nobuya;Kondo, Motohiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.59-59
    • /
    • 2017
  • Rice (Oryza sativa L.) is the most important crop and its yield must be improved to feed the increasing global population. Recently developed high-yielding varieties with extra-large sink capacity often have a problem in unstable grain-filling. Therefore, understanding limiting factors for improving grain-filling and controlling them are essential for further improvement of rice grain yield. However, since grain-filling rate was determined by complex sink-source balance, the ability of grain-filling was very difficult to evaluate. Source ability for 'grain' was not only determined by the ability of carbon assimilation in leaves, but also that of carbon translocation from leaves to panicles. Sink strength was determined by the complex carbon metabolism from sucrose degradation to starch synthesis. Hence, to evaluate the grain-filling ability and determine its regulatory steps, the whole picture of carbon flow from photosynthesis at leaves to starch synthesis at grains must be revealed in a metabolite level. In this study, the yield and grain growth rate of three high-yielding varieties, which show high sink capacity commonly, were compared. Momiroman showed lower grain filling rate and slower grain growth rate than the other varieties, Hokuriku 193 and Tequing. To clarify the limiting point in the carbon flow of Momiroman, $CO_2$ labeled by stable isotope ($^{13}C$) was fed to three varieties during ripening period. The ratio of $^{13}C$ left in the stem was higher in Momiroman 24 hours after feeding, suggesting inefficient carbon translocation of Momiroman. More interestingly, $^{13}C$ translocation from soluble fraction to insoluble one in the grain seemed to be slower in Momiroman. To get the further insight in a metabolite level, we are now trying the $^{13}C$ labeling metabolome analysis in the developing grains.

  • PDF

Synthesis of High Purity Multiwalled and Singlewalled Carbon Nanotubes by Arc-discharge

  • Kim, Keun-Soo;Park, Young-Soo;An, Kay-Hyeok;Jeong, Hee-Jin;Kim, Won-Seok;Choi, Young-Chul;Lee, Seung-Mi;Moon, Jeong-Mi;Chung, Dong-Chul;Bae, Dong-Jae;Lim, Seong-Chu;Lee, Young-Seak;Lee, Young-Hee
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.53-59
    • /
    • 2000
  • The synthetic methods for high yield of multiwalled carbon nanotube (MWNT) and singlewalled carbon nanotube (SWNT) with high purity by arc discharge have been investigated. MWNTs were synthesized under different pressures of helium and the gas mixture of argon and hydrogen. Relatively high pressure of 300-400 torr was required for high yield MWNTs synthesis at low bias voltage of about 20 V and 55 A, whereas low pressure of about 100 torr was required for SWNTs. The introduction of hydrogen gases during the synthesis of MWNTs improved the yield and purity of the samples. The SWNTs were synthesized by the assistance of a small amount of mixture of transition metals, which played as a catalyst during the formation process. The purity and yield of SWNTs were higher at a lower pressure and enhanced by mixing more components of the transition metals.

  • PDF

Extraction of Oil from Chlorella vulgaris Using Supercritical Carbon Dioxide and Organic Solvent (초임계 이산화탄소와 유기용매를 이용한 Chlorella vulgaris 오일의 추출)

  • Ryu, Jong-Hoon;Park, Mi-Ran;Lim, Giobin
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.98-105
    • /
    • 2014
  • Three different types of extraction processes, which used supercritical carbon dioxide ($SCCO_2$) and organic solvent, were attempted to improve the extraction yield of oil from Chlorella vulgaris: cosolvent-modified $SCCO_2$ extraction, $SCCO_2$ extraction with ultrasonic sample treatment in organic solvent, and static extraction with organic solvent followed by dynamic $SCCO_2$ extraction. Among these, the last $SCCO_2$ extraction process was found to be most effective in the extraction of oil. Compared with pure $SCCO_2$ extraction, the extraction yield of oil was observed to increase about 7 times.

Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method (자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.

Effect of Activated Carbon on Growth of Allium tuberosum in Green House

  • Choi Seong-Kyu;Park Yeong-Tyae
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.225-229
    • /
    • 2005
  • This study was conducted to investigate the effect of activated carbon on leave production of Allium tuberosum. Growth characteristics including plant height and leaf length were the highest when activated carbon was added with 5%, suggesting that optimum amount of activated carbon was ranged from 5 to 10%. Weight of fresh green vegetable in Allium tuberosum was low in control. And fresh weight of Allium tuberosum was higher in 5% treatment of activated carbon. However, when the plants were grown in activated carbon of $5{\sim}10%$, fresh yield of green vegetable of Allium tuberosum can be increased by using Activated Carbon. Activated carbon can be utilized as a soil conditioner in agricultural crop areas.

  • PDF

Role of Metal Catalyst and Substrate Site for the Growth of Carbon Nanomaterials

  • Manocha, L.M.;Valand, Jignesh;Manocha, S.
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • The work reported in this paper relates to preparation and characterization of carbon nanomaterials by CVD method on different substrates by decomposition of certain hydrocarbons at 550-$800^{\circ}C$ using a horizontal quartz tube reactor. Monometallic and bimetallic catalyst system of iron and nickel were used for the preparation of different carbon nanomaterials. The influence of various parameters such as substrate/catalyst preparation parameters, the nature of substrate, catalyst concentration, reaction time and temperature on the growth, yield and alignment of carbon nanotubes has been studied. The characterization of carbon nanomaterials has been carried out using SEM, TEM and TGA. The carbon nanomaterials developed were vertically aligned on a large area of flat quartz substrate.

  • PDF

Characteristics of Activated Carbon Prepared from Waste Citrus Peel by KOH Activation (KOH 활성화법으로 제조한 폐감귤박 활성탄의 특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.649-654
    • /
    • 2017
  • An activated carbon was prepared from waste citrus peel produced in large amounts in Jeju Island, Korea, using KOH activation and its characteristics was examined. Under the condition of the KOH ratio between 100 and 300%, activation temperature from 400 to $900^{\circ}C$ and activation time from 0.5 to 1.5 h, the iodine adsorptivity of the activated carbon prepared increased but the yield decreased with respect to the increase of each conditions. The iodine adsorptivity and yield of the activated carbon prepared at the activation time of more than 1.5 h were similar to those of using 1.5 h. In addition, as the KOH ratio increased, the specific surface area and pore volume of the activated carbon increased, but the pore diameter decreased. The activated carbon has an average pore diameter of $20{\sim}25{\AA}$. Also, the activated carbon prepared at 300% KOH and $900^{\circ}C$ for 1.5 h has the highest specific surface area of $1,527m^2/g$ and iodine adsorptivity of 1,246 mg/g.

High Char-Yield in AN-AM Copolymer by Acidic Hydrolysis of Homopolyacrylonitrile

  • Cheng, Run;Zhou, You;Wang, Jing;Cheng, Yumin;Ryu, Seungkon;Jin, Riguang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • Acrylonitrile (AN)-acrylamide (AM) copolymers were prepared by nitric acidic hydrolysis of homopolyacrylonitrile. The acrylamino group increased as a function of hydrolysis time, while crystallinity decreased. Differential scanning calorimetry and a thermal gravimetric analysis indicated that the acylamino introduced by acidic hydrolysis effectively enhanced the cyclization reaction at low temperature due to the change of the cyclization reaction mechanism. Char-yield of AN-AM copolymers also gradually increased with increasing hydrolysis time. The maximum char-yield was 49.48% when hydrolized at $23^{\circ}C$ in 65% nitric acid solution for 18 h, which was 30% higher than that of non-acidic hydrolysis of homopolyacrylonitrile. Simulation of the practical process also showed an increase of char yields, where the char yields were 55.43% and 62.60% for homopolyacrylonitrile and copolyacrylonitrile, respectively, with a hydrolysis time of 13 h.

Biotransformation of Progesterone to 11 $\alpha$-Hydroxyprogesterone by using Rhizopus nigricans at Elevated Concentration of the Substrate (Rhizopus nigricans를 이용한 고농도의 Progesterone으로부터 11$\alpha$-hydroxyprogesterone의 생산)

  • 최용복;최상기;박영훈
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.66-70
    • /
    • 1990
  • A study on 11 $\alpha$-hydroxylation of progesterone by using Rhizopus nigricans was carried out to produce efficiently 11 $\alpha$-hydroxyprogesterone which is an essential intermediate of corticosteroids synthesis. Firstly, medium was optimized in view of bioconversion yield and cell growth. Glucose and casamino acid were selected as carbon and nitrogen source and the ratio of carbon to nitrogen which maximize bioconversion yield was determined to be 2:1. Secondly, the addition time of progesterone and dispersion method were studied. When progesterone dispersed with 0.01% (v/v) Tween 80 was added at 12-14 hr of cultivation, higher bioconversion yield was obtained. When 20g/$\ell$ of progesterone was added, the yield reached 70% under optimized conditions.

  • PDF