References
- Paiva MC, Bernardo CA, Edie DD. A comparative analysis of alternative models to predict the tensile strength of untreated and surface oxidised carbon fibers. Carbon, 39, 1091 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00232-3.
- Wang CG. PAN-based carbon fiber, Science Press, Beijing, China, 19-21 (2011).
- Devasia R, Reghunadhan Nair CP, Sivadasan P, Ninan KN. High char-yielding poly[acrylonitrile-co-(itaconic acid)-co-(methyl acrylate)]: synthesis and properties. Polym Int, 54, 1110 (2005). http://dx.doi.org/10.1002/pi.1811.
- Chen H, Zhang WX, Wang CG. Higher molecular polyacrylonitrile prepared by suspension polymeration in aqueous medium. Polym Mater Sci Eng, 2, 79 (2003).
- Wiles KB. Determination of reactivity ratios for acrylonitrile/ methyl acrylate radical copolymerization via nonlinear methodologies using real time FTIR [MS Thesis], University Libraries Virginia Polytechnic Institute and State University, Blacksburg (2002).
- Litmanovich AD, Plate NA. Alkaline hydrolysis of polyacrylonitrile. On the reaction mechanism. Macromol Chem Phys, 201, 2176 (2000). http://dx.doi.org/10.1002/1521-3935(20001101)201:16<2176::AID-MACP2176>3.0.CO;2-5.
-
Loevy J, Janout V, Hrudkova H.
$^{13}C$ NMR study of hydrolyzed poly(acrylonitrile). Collect Czech Chem Commun, 49, 506 (1984). http://dx.doi.org/10.1135/cccc19840506. - Krentsel LB, Kudryavtsev YV, Rebrov AI, Litmanovich AD, Plate NA. Acidic hydrolysis of polyacrylonitrile: effect of neighboring groups. Macromolecules, 34, 5607 (2001). http://dx.doi.org/10.1021/ma010213o.
- Imai Y, Minami S, Yoshihara T, Joh Y, Sato H. Preparation and characterization of amorphous polyacrylonitrile. J Polym Sci B, 8, 281 (1970). http://dx.doi.org/10.1002/pol.1970.110080413.
- Saum AM. Intermolecular association in organic nitriles; the CN dipole-pair bond. J Polym Sci, 42, 57 (1960). http://dx.doi.org/10.1002/pol.1960.1204213907.
- Allen RA, Ward IM, Bashir Z. An investigation into the possibility of measuring an 'X-ray modulus' and new evidence for hexagonal packing in polyacrylonitrile. Polymer, 35, 2063 (1994). http://dx.doi.org/10.1016/0032-3861(94)90229-1.
-
Sivy GT, Gordon Iii B, Coleman MM. Studies of the degradation of copolymers of acrylonitrile and acrylamide in air at
$200^{\circ}C$ . Speculations on the role of the preoxidation step in carbon fiber formation. Carbon, 21, 573 (1983). http://dx.doi.org/10.1016/0008-6223(83)90241-5. - Zhang W, Li M. DSC study on the polyacrylonitrile precursors for carbon fibers. J Mater Sci Technol, 21, 581 (2005).
- Kakida H, Tashiro K. Mechanism and kinetics of stabilization reactions of polyacrylonitrile and related copolymers IV. Effects of atmosphere on isothermal DSC thermograms and FT-IR spectral changes during stabilization reaction of acrylonitrile/methacrylic acid copolymer. Polym J, 30, 463 (1998). http://dx.doi.org/10.1295/polymj.30.463.
Cited by
- Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination vol.52, pp.17, 2017, https://doi.org/10.1007/s10853-017-1240-1