• Title/Summary/Keyword: Carbon yield

Search Result 1,170, Processing Time 0.034 seconds

아까시나무 임분의 임목수확량 및 탄소저장량 추정 (Estimation of Stand Yield and Carbon Stock for Robinia pseudoacacia Stands in Korea)

  • 손영모;김소원;이선정;김정수
    • 한국산림과학회지
    • /
    • 제103권2호
    • /
    • pp.264-269
    • /
    • 2014
  • 본 연구는 아까시나무 군락에 대한 현재 생육지 분포면적의 파악과 임분수확량 및 탄소저장량을 구명하기 위하여 수행되었다. 아까시나무에 대한 분포면적은 1:5,000 임상도를 이용하여 추출하였으며, 임분수확량은 Weibull 직경분포모델을 이용하였고, 탄소저장량 및 흡수량은 임분수확량에 탄소배출계수를 적용하여 산출하였다. 임분수확량을 산출하기 위하여 임분 평균직경, 임분 흉고단면적, 최소 및 최대 직경 등 임분 생장인자에 대한 추정식을 산출하고 정확성을 검증하였다. 이 결과 모든 생장인자의 추정식이 분석에 이용할 수 있는 유의성을 가지고 있는 것으로 나타났다. 또한 임지의 생산력을 판정할 수 있는 지위지수를 도출한 바, 지위지수는 16~22 범위에 있는 것으로 나타났으며, 이들을 종합하여 임분수확표를 만들었다. 우리나라 아까시나무는 경상, 충청 및 경기도의 내륙에 주로 분포하는 것으로 나타났으며, 총 면적은 26,770 ha에 달하는 것으로 나타났다. 이를 탄소저장량으로 전환한 결과 2,517,598 tC 였으며, 연간 3.76 tC/ha를 흡수하는 것으로 계산되었다. 이는 탄소흡수량이 높은 수종으로 알려져 있는 참나무류와 유사하여, 추후 아까시나무가 기후변화 시대에 온실가스를 저장하는 수종으로서의 역할도 충분히 가능할 것이라 판단된다. 또한 본 연구에서 만든 임분수확표는 아까시나무 경영 및 관리정책에 도움을 줄 수 있을 것으로 사료된다.

산림경영형 산림탄소상쇄 사업설계를 위한 주요 수종별 베이스라인 흡수량 산정 (A Study on the Baseline Carbon Stock for Major Species in Korea for Conducting Carbon Offset Projects based on Forest Management)

  • 김영환;전어진;신만용;정일빈;이상태;서경원;표정기
    • 한국산림과학회지
    • /
    • 제103권3호
    • /
    • pp.439-445
    • /
    • 2014
  • 본 연구에서는 산림경영형 산림탄소상쇄 사업을 설계하는데 필요한 베이스라인 흡수량의 산정을 위해 제5차 국가산림자원조사 자료를 토대로 개발된 동적 임분생장모델을 적용하였다. 모델의 정확성 검증을 위해 홍천, 횡성, 양양 대치리 및 정자리에 위치한 4개 시험지 14개 간벌 처리구에서 조사된 실측자료와 비교한 결과 모델 예측치와 실측치의 편차가 5% 미만의 낮은 오차율을 보였다. 개발된 동적 임분생장모델을 이용하여 수종별 베이스라인 시나리오에 따른 임분 생장량 및 탄소저장량의 변화를 예측하고, 베이스라인 흡수량을 산정한 결과, 상수리나무의 베이스라인 흡수량이 83.01tC/ha로 가장 높은 반면, 리기다소나무(32.17tC/ha)와 중부지방소나무(39.09tC/ha)는 흡수량이 낮았다. 따라서 수종갱신을 통한 산림경영형 산림탄소상쇄사업을 추진하는 경우 리기다소나무와 중부지방소나무 임분을 대상지로 하는 것이 유리한 것으로 나타났다. 본 연구에서 제시된 수종별 베이스라인 흡수량과 동적 임분생장모델은 산림경영형 산림탄소상쇄 사업을 설계하는데 활용할 수 있을 것으로 기대된다.

저탄소강판을 이용한 굽힘 가공에서 발생하는 꺽임현상에 대한 발생 기구 해석 (Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steel Sheets)

  • 박기철;윤정봉
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.336-339
    • /
    • 2007
  • In order to investigate the cause of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was due to the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in $0.5{\sim}0.6t$ sheet in $15{\sim}20mm$ radius bending.

  • PDF

일방향 섬유로 성능향상된 교량 상판의 파괴거동 및 항복선 이론을 적용한 해석적 연구 (A Study on the Failure Behavior and the Application of Yield-Line Theory on the Bridge Decks Strengthened by Directional Fiber Plastic)

  • 심종성;오홍섭;류승무
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.81-86
    • /
    • 2001
  • The concrete bridge decks are in need of replacement and rehabilitation due to decreasing load carrying capacity. In this study, to propose a strengthening technique that improves usability and structural performance of the bridge deck and to propose an efficient strengthening design technique which satisfies both the strength End serviceability of the bridge deck, this paper shows the failure characteristics of the strengthened bridge decks and proposes an empirical yield criterion. Therefore, strengthening efficiency was proposed based on the experiment and yield line analysis result. The yield line theory which adopts the modified criteria of Johansen is considered to predict the ultimate strength about all strengthening material(Carbon Fiber Sheet, Carbon Fiber Rod, Grid Type Carbon Fiber).

  • PDF

저탄소강판을 이용한 굽힘 가공에서 발생하는 꺾임 현상에 대한 발생기구 해석 (Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steels)

  • 박기철;윤정봉
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.317-322
    • /
    • 2007
  • In order to investigate the cause and condition of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was related with the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in 0.5-0.6t sheet in $15{\sim}25mm$ radius bending. The tendency of fluting occurrence was reduced as decreasing the radius of bending, increasing thickness of bended sheet, and removing irregularity in sheet and bending processes.

Cellulose-based carbon fibers prepared using electron-beam stabilization

  • Kim, Min Il;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • 제18권
    • /
    • pp.56-61
    • /
    • 2016
  • Cellulose fibers were stabilized by treatment with an electron-beam (E-beam). The properties of the stabilized fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The E-beam-stabilized cellulose fibers were carbonized in N2 gas at 800℃ for 1 h, and their carbonization yields were measured. The structure of the cellulose fibers was determined to have changed to hemicellulose and cross-linked cellulose as a result of the E-beam stabilization. The hemicellulose decreased the initial decomposition temperature, and the cross-linked bonds increased the carbonization yield of the cellulose fibers. Increasing the absorbed E-beam dose to 1500 kGy increased the carbonization yield of the cellulose-based carbon fiber by 27.5% upon exposure compared to untreated cellulose fibers.

Ni-Co 합금강의 기계적 특성에 대한 탄소함량의 영향 (Influence of Carbon Content on the Mechanical Properties of the Ni-Co Alloy)

  • 장경천;국중민;정장만;권택용;최병기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.129-135
    • /
    • 2004
  • This study was to evaluate the effect of carbon content on metallic change and fatigue characteristics with Fe-29% Ni-17% Co, low heat expansion alloy, widely using electronic components, precision machines, and sealing with glass and metal etc. The steels were fabricated with variation of carbon content, 0, 0.03, 0.06, 0.1, and 0.20% with VIM and tensile test and fatigue test were performed to achieve the above purpose. The more carbon content, the higher hardness value and yield strength. But elongation of 0.03%C, 0.06%C, and 0.10%C specimen decreased about 2.2%, 1.5% and 0.8% respectively mote than that of the base metal. Especially the strength and elongation of 0.20%C specimen increased simultaneously about 14.4% and 7.5%. Fatigue life of 0.03%C specimen decreased but the more carbon content, the higher fatigue life over 0.06% carbon content more than that of base metal.

  • PDF

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Sharma, Sanjeev;Chun, Sang-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.387-393
    • /
    • 2019
  • Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

Effects of Nutrient Composition on Yield and Quality of Mushroom in Lentinula edodes Cultivation Using Softwood Sawdust

  • Jung, Ji-Young;Hong, Seong-Cheol;Rinker, Danny Lee;Choi, Myung-Suk;Lee, Byung-Hyun;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.124-134
    • /
    • 2010
  • This study was performed to evaluate the efficiency of using softwood as the sawdust medium for Lentinula edodes cultivation, effect of nutrient on the mycelial growth, spawning, the mushroom yield, and quality. The nitrogen nutrition significantly enhanced the mycelial growth of L. edodes. The glutamic acid in the L. leptolepis and P. koraiensis, and asparagine in the P. densiflora were appeared to slight increase in the mycelial growth. The vegetable oil showed very effective on the mycelial growth in the P. koraiensis sawdust medium. Carbon/nitrogen ratio of all the test was reduced after mycelial growth. The mycelial growth was exclusively dependent on reduction of carbon. The mushroom yield (32.7%) of the P. densiflora sawdust medium (carbon source: 3% active carbon, nitrogen source: 0.4% asparagines) was the best in mushroom production of L. edodes, followed by the Q. variabilis sawdust (35.4%) of the control medium. The diameter of mushroom cap was obtained from the P. densiflora sawdust (carbon source: 3% sucrose, nitrogen source: 0.4% potassium nitrate) and P. koraiensis sawdust (carbon source: 3% sucrose, nitrogen source: 0.4% potassium nitrate), and the P. koraiensis sawdust (carbon source: 3% xylose, nitrogen source: 0.4% glutamic acid, supplement: 0.05% amino acid), with values 71.5 mm, 71.5 mm and 72.1 mm, respectively. In the polypropylene bag cultivation, the weight losses of the block medium gradually increased for 80 days in the dark (13.8~16.8%) and then became stable in the range of 20.7~25.8%.

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.