• Title/Summary/Keyword: Carbon rods

Search Result 47, Processing Time 0.021 seconds

Fabrication of micro carbon structures using laser-induced chemical vapor deposition and Raman spectroscopic analysis (레이저 국소증착에 의한 탄소 미세 구조물 제조 및 분광분석)

  • ;;J. Senthil Selvan
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2002
  • Characteristics of micro carbon structures fabricated with laser-induced chemical vapor deposition (LCVD) are investigated. An argon ion laser (λ=514.5nm) and ethylene gas were utilized as the energy source and precursor, respectively. The laser beam was focused onto a graphite substrate to produce carbon deposit through thermal decomposition of the precursor. Average growth rate of a carbon rod increased for increasing laser power and pressure. Micro carbon rods with good surface quality were obtained at near the threshold condition. Micro carbon rods with aspect ratio of about 100 and micro tubular structures were fabricated to demonstrate the possible application of this method to the fabrication of three-dimensional microstructures. Laser Raman spectroscopic analysis of the micro carbon structures revealed that the carbon rods are consisting of amorphous carbon.

  • PDF

The Sliding Wear Characteristics of Carbon Steel Castings against High Carbon Steel Wire Rods (탄소주강과 경강선재간의 미끄럼 마멸특성)

  • 류중북;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.319-326
    • /
    • 2001
  • The sliding wear characteristics of carbon steel castings were Investigated using a ball on disk type tester. The experiment was conducted using high carbon steel wire rods as ball material and carbon steel castings as disk material and different operating conditions, at room temperature under a lubrication and dry conditions. The results showed that the carbon steel castings appeared average wear volume Is lowed after annealing under a lubrication conditions and wear curve linear Increased. The specific wear rate of carbon steel castings Increased with wire diameter lubrication and dry also Increased 125 times In Ory. The sliding wear mechanism were Investigated due to fatigue wear lubrications and abrasive wear dries also wire Included fatigue and abrasive wear by plastic flow.

  • PDF

The Fatigue behavior of strengthened bridge deck with Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 교량 바닥판의 피로거동)

  • 심종성;김민수;김영호;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-318
    • /
    • 2002
  • The use of carbon fiber rods is a promising technology of increasing flexural and shear strength of deficient reinforced concrete members. The purpose of this experimental study is to investigate the fatigue behavior and strengthening effects of the strengthened bridge deck with isotropic and othortropic carbon fiber rod. This study shows a fatigue loading, compliance and S-N Curve between strengthened isotropically and othortropically. Then estimate the effective fatigue behavior of RC slab using composite rods that are inserted in high special purposed polymer mortar.

  • PDF

The Sliding Wear Characteristics of the Carbon Steel Castings against High Carbon Steel Wire Rods (탄소주강품과 경강선재간의 미끄럼 마멸특성)

  • 류중북;채영훈;김석삼
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • The sliding wear characteristics of the crane sheave were investigated using a pin-on-disk rig tester. The experiment was conducted using a high carbon steel wire that was upper material, also carbon steel castings that was disk material. There are various operating conditions in this work. At the room temperature, we carried out the wear test under a grease lubrication and dry condition. The results of wear test showed that an annealed-casted have lower, also the wear curves are linearly increased with increasing of sliding distance. For the specific wear rate of annealed-casted, the wear resistance was increased with decreasing diameter of wire. The wear of a wire and a disk have a different mechanism, the one is the abrasive wear due to fatigue wear under lubrication, another is the adhesion wear under dry condition.

Braided composite rods: Innovative fibrous materials for geotechnical applications

  • Fangueiro, Raul;Rana, Sohel;Gomes Correia, A.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • In this paper, a novel fibrous material known as axially reinforced braided composite rods (BCRs) have been developed for reinforcement of soils. These innovative materials consist of an axial reinforcement system, comprised of longitudinally oriented core fibres, which is responsible for mechanical performance and, a braided cover, which gives a ribbed surface texture for better interfacial interactions with soils. BCRs were produced using both thermosetting (unsaturated polyester) and thermoplastic (polypropylene) matrices and synthetic (carbon, glass, HT polyethylene), as well as natural (sisal) core fibres. BCRs were characterized for tensile properties and the influence of core fibres was studied. Moreover, BCRs containing carbon fibre in the core composition were characterized for piezoresistivity and strain sensing properties under flexural deformation. According to the experimental results, the developed braided composites showed tailorable and wide range of mechanical properties, depending on the core fibres and exhibited very good strain sensing behavior.

Germanium-based pinning dopants for MgB2 bulk superconductors

  • Chung, K.C.;Ranot, M.;Shinde, K.P.;Oh, Y.S.;Kang, S.H.;Jang, S.H.;Hwang, D.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.36-39
    • /
    • 2019
  • Effects of the spherically shaped Ge and the rod-like carbon-coated Ge on the superconducting properties of $MgB_2$ were investigated. Pure Ge and carbon-coated Ge nano-powders were synthesized under the different amount of $CH_4$ (0 to 5 kPa) by using DC thermal plasma method. When the $CH_4$ was added ~100 nm sized Ge with a spherical shape changed to rod-like morphology with a diameter of ~30-70 nm and a length of ~400-500 nm. Also it was confirmed that thin carbon layers of a few nanometers were formed along the rod length and the agglomerated carbons were found on the edges of rods. Pure spherical Ge and Ge/C rods were mixed and milled with Mg & B precursor to form the doped $MgB_2$ bulk samples by the solid-state reaction method. Almost no change of $T_c$ was noticed for the pure Ge-added $MgB_2$, whereas $T_c$ was found to decrease with the Ge/C-added $MgB_2$ samples. It was found that the pure spherical Ge showed to have a negative effect on the flux pinning of $MgB_2$. However, Ge/C rods can enhance the flux pinning property of $J_c$ due to the coated carbon on Ge rods.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Tensile Properties of Hybrid FRP Rods with Glass and Carbon Fibers (유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구)

  • You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.275-282
    • /
    • 2006
  • Recently, Fiber Reinforced Polymers(FRP) has been emerged as an alternative material to solve the corrosion of steel reinforcement in reinforced concrete structures. FRP exhibits higher specific strength and lower weight compared to steel reinforcement. Moreover, good resistance to corrosion of the FRP may be useful in aggressive environments causing deterioration such as chloride environment. However, causes for higher initial cost of FRP than that of steel, little information on the long-term behavior of FRP, and brittle failure make the efforts to apply FRP in civil structures slow. Glass fiber among the fibers used to manufacture FRP can be seen as the most beneficial material with regard to initial costs. But its low elastic modulus, which attains barely a quarter of steel, nay thus lead to excessive deflections when used as reinforcement for flexural members. This research was carried out on the tensile properties of hybrid rods made with glass and carbon fibers to improve those of FRP rod made with glass fiber. Parameters were resin type and the arrangement of glass and carbon fibers. The tensile properties of hybrid rods were compared with those of rods manufactured with only glass or carbon fibers. The results indicated that the tensile properties of hybrid rod were good when the carbon fiber was arranged in the core.

Synthesis of W18O49 Phase by Carbothermal Reduction of Tungsten Oxide and its Field Emission Characteristics

  • Yang, Hyo-Seung;Park, Hoon;Kim, Hyoung-chul;Ahn, Jae-Pyoung;Huh, Moo-Young;Park, Jong-Ku
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • We report a carbothermal reduction process for massive synthesis of monolithic W$_{18}$O$_{49}$ phase from tungsten oxide in the presence of carbon source. Carbon black powder was used as a carbon source and added to WO$_3$ by 40 weight percent. Bundles of W$_{18}$O$_{49}$ rods were formed over the temperature range of 80$0^{\circ}C$$^{\circ}C$ to 90$0^{\circ}C$. Pure W$_{18}$O$_{49}$ bundles could be separated from the mixture of W$_{18}$O$_{49}$ and residual carbon black powder. Field emission character of W$_{18}$O$_{49}$ phase was determined using the extracted W$_{18}$O$_{49}$ rods. Flat lamp fabricated from the W$_{18}$O$_{49}$ rods showed the turn-on field of 9.3 V/${\mu}m$.

Fabrication of Micro Carbon Structures and Patterns with Laser-assisted Chemical Vapor Deposition (레이저 국소증착을 통한 미세 탄소구조물 및 패턴 제조)

  • 정성호;김진범;이선규;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.914-917
    • /
    • 2002
  • Fabrication of micro carbon structures and patterns using laser-assisted chemical vapor deposition is studied. Argon ion laser and ethylene were used to grow micro carbon rod through pyrolytic decomposition of the reaction gas. The influence of reaction gas pressure and incident laser power on the diameter and growth rate of the micro carbon rod was experimentally investigated. The diameter of micro carbon rods increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below 1W. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 28 ${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated.

  • PDF