• Title/Summary/Keyword: Carbon preform

Search Result 58, Processing Time 0.026 seconds

Preparation and Characterization of Mesophase Pitches as a Matrix Precursor of Carbon Fiber Reinforced Carbon Composite (탄소/탄소 복합재 매트릭스 전구체로서의 메조페이스 핏치의 제조 및 특성에 관한 연구)

  • 정현진;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1387-1393
    • /
    • 1996
  • A study on mesophase pitch as a matrix precursor of carbon fiber reinforced carbon (C/C) composite has been recently presented. This study is concerned with the production of mesophase pitch as matrix precursors for C/C composite from coal tar pitch. A commercial coal tar pitch was heat-treated at 25$0^{\circ}C$ for 2 hours to remove low molecular weight fraction from the pitch then increasing the temperature of the pitch to between 350~45$0^{\circ}C$ to produce mesophase pitch. The pitch was continuously stirred during this time and nitrogen gas was continuously bubbled through the pitch. Spherical and bulk mesophases were formed in the pitch after heat-treatment,. Parent and mesophae pitches were characterized by elemental analysis coke yield solubi-lity in tetrahydrofuran and hexane and an optical microscopy to measure the mesiophase content. It was neces-sary to produce C/C composite that a mesophase pitch with about 30-40 vol% mesophase spherulites can be infiltrated into a fiber preform without a filter effect as a matrix precursor conditions. This condition was satisfied with mesophase pitch heat treated at 40$0^{\circ}C$ for 2 hours. The other heat treatment conditions showed the nuclei of mesophase or bulk mesophae which were not satisfied with the matix precursor condition.

  • PDF

Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites (적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발)

  • Park, Geon-Tae;Lee, Dong-Woo;Byun, Joon-hyung;Song, Jung-il
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.115-124
    • /
    • 2020
  • Laminate composites, especially Carbon fiber-reinforced composites are wide used in various industry such as aerospace and automotive industry due to their high specific strength and specific stiffness. However, the laminate composites has a big disadvantage that delamination occurs because the arrangement of the fibers is all arranged in the in-plane direction, which limits the field of application of the laminate composites. In this study, we first developed a laminate composites T-beam in which π-beam and flat plate were combined and optimized the design parameters through structural analysis and mechanical tests. Afterwards, 3D weave preform T-beam was developed by applying the same design parameters of laminate composites T-beams, and improved mechanical strength was achieved compared to laminated structures. These findings are expected to be applicable to existing laminated composite structures that require increased strength.

Performance Evaluation of C/SiC Composites (C/SiC 복합재료의 내열성능 평가)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.185-188
    • /
    • 2007
  • The main objective of this research effort was to develope the performance of C/SiC composites manufactured by LSI (Liquid Silicon Infiltration) method for solid and liquid rocket propulsion system and ensure the performance analysis technique. The various carbon preform were manufactured by filament winding, tape rolling, involute layup and stack molding process. For the best performance of thermal and mechanical properties, many process conditions were tested and selected by varying preform, the content of SiC, temperature, impregnation resin and chemical vapour reaction. In conclusion, the high performance and reliability of C/SiC composite were proved for solid and liquid rocket propulsion system. And the performance analysis technique related to mathematical ablation model was originated.

  • PDF

Changes in Mechanical and Electrical Properties as a Function of Unidirectional Pressure Changes in Preforming While Isostatic Pressing for Graphite Block Fabrication (흑연블록 제조를 위한 등압성형 시 일축가압 예비성형의 압력변화에 따른 기계적 및 전기적 특성 변화)

  • Tae-Sub Byun;Dong-Pyo Jeon;Sang-Hye Lee;Sang-Woo Lee;Jae-Seung Roh
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • In this study, a graphite block is fabricated using artificial graphite processing byproduct and phenolic resin as raw materials. Mechanical and electrical property changes are confirmed due to the preforming method. After fabricating preforms at 50, 100, and 150 MPa, CIP molding at 150 MPa is followed by heat treatment to prepare a graphite block. 150UP-CIP shows a 12.9% reduction in porosity compared with the 150 MPa preform. As the porosity is decreased, the bulk density, flexural strength, and shore hardness are increased by 14.9%, 102.4%, and 13.7%, respectively; and the deviation of density and electrical resistivity are decreased by 51.9% and 34.1%, respectively. Therefore, as the preforming pressure increases, the porosity decreases, and the electrical and mechanical properties improve.

Preparation and Characterization of Carbon/Phenol Composite by RTM Process (RTM 공정에 의한 탄소/페놀 복합재료의 제조 및 특성 분석)

  • Jin, Da Young;Lee, Hyun Jae;Lim, Sung Chan;Kim, Yun Chul;Yun, Nam Gyun;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.239-245
    • /
    • 2016
  • In this study, carbon/phenol composites were prepared from carbon fiber preform and phenol resin by RTM(resin transfer molding) process. And changes in the properties of the composite according to the pre-treatment of phenol resin was mainly studied. RTM process conditions were deduced from viscosity and thermal analysis of phenol resin which were rheometer and thermogravimetric analyzer(TGA). RTM process was performed under various injection and molding temperature. Characterization of the prepared C/P composites were evaluated by various analysis. Morphology of composites was analyzed by Micro-CT(MCT), Mechanical properties of composites were measured through the flexural properties. As results, volatile impurities of phenol resin were effectively removed at resin pre-treatment temperature of $100^{\circ}C$ and composite was sufficiently cured at molding temperature of $180^{\circ}C$.

Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities (서로 다른 밀도를 갖는 탄소섬유강화 탄화규소 복합재료의 압흔응력에 의한 기계적 거동)

  • Lee, Kee-Sung;Kim, Il-Kyum;Kim, Tae-Woo;Kim, Se-Young;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.288-292
    • /
    • 2011
  • In this study, we investigated the mechanical behavior of carbon fiber reinforced silicon carbide composites by indentation stress. Relatively porous and dense fiber reinforced ceramic composites were fabricated by liquid silicon infiltration (LSI) process. Densification of fiber composite was controlled by hardening temperature of preform and consecutive LSI process. Load-displacement curves were obtained during indentation of WC sphere on the carbon fiber reinforced silicon carbide composites. The indentation damages at various loads were observed, and the elastic modulus were predicted from unloading curve of load-displacement curve.

Morphological optimization of process parameters of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Manwatkar, Sushant Krunal;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • A microstructure analysis is carried out to optimize the process parameters of a randomly oriented discrete length hybrid carbon fiber reinforced carbon matrix composite. The composite is fabricated by moulding of a slurry into a preform, followed by hot-pressing and carbonization. Heating rates of 0.1, 0.2, 0.3, 0.5, 1, and $3.3^{\circ}C/min$ and pressures of 5, 10, 15, and 20 MPa are applied during hot-pressing. Matrix precursor to reinforcement weight ratios of 70:30, 50:50, and 30:70 are also considered. A microstructure analysis of the carbon/carbon compacts is performed for each variant. Higher heating rates give bloated compacts whereas low heating rates give bloating-free, fine microstructure compacts. The compacts fabricated at higher pressure have displayed side oozing of molten pitch and discrete length carbon fibers. The microstructure of the compacts fabricated at low pressure shows a lack of densification. The compacts with low matrix precursor to reinforcement weight ratios have insufficient bonding agent to bind the reinforcement whereas the higher matrix precursor to reinforcement weight ratio results in a plaster-like structure. Based on the microstructure analysis, a heating rate of $0.2^{\circ}C/min$, pressure of 15 MPa, and a matrix precursor to reinforcement ratio of 50:50 are found to be optimum w.r.t attaining bloating-free densification and processing time.

Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites (2-D Braided Textile 금속복합재료의 성형과 특성 해석)

  • 이상관;김효준;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

Studies on the Mathematical Modelling of the Pulse-CVI for the Infiltration of Siliconcarbide from Methyltrichlorosilane (메틸삼염화규소로부터 탄화규소 침착의 Pulse-CVI에 대한 수치모사 연구)

  • Kim, In-Goo;Kim, Min-Ki;Chung, Gui-Yung
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2005
  • In this research, the mathematical modelling of the pulse-CVI (Chemical Vapor Infiltration) for the preparation of siliconcarbide/carbon composite. Each pulse consists with the gas injection time, the reaction time and the evacuation time. Effects of the reaction time and the evacuation time were studied. Additionally, the effects of the reactant concentration and the pressure were observed. The benefits of the pulse-CVI such as the uniform infiltration of siliconcarbide into the carbon preform and the short reaction time were certified.

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.