• Title/Summary/Keyword: Carbon monoxide conversion

Search Result 72, Processing Time 0.022 seconds

Noble metal catalysts for Water Gas Shift reaction (귀금속계열 WGS 촉매 연구)

  • Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2228-2231
    • /
    • 2007
  • Water gas shift reactor in fuel processing is an important part that converts carbon monoxide into hydrogen. Fuel processing system for PEMFC usually has two stages of WGS reactors, which are high temperature and low temperature shifter. In this study we prepared noble metal catalysts and compared their performances with that of a commercial iron chromium oxide catalyst. Noble metal catalysts and the commercial catalyst showed quite different temperature dependence of carbon monoxide conversion. The conversion of carbon monoxide at the commercial catalyst was very low at medium temperature(${\sim}300^{\circ}C$) and increased rapidly as temperature increased while the conversion at noble metal catalysts was high in the medium temperature range and decreased as temperature increased, which is thermodynamically expected. Their characteristics agreed well with the literature published, and we are accomplishing further study for improvement of the noble metal catalysts.

  • PDF

A Study of Carbon Monoxide Oxidation on Pt & Pt-Pd Catalysts (귀금속촉매 (Pt, Pd)를 이용한 일산화탄소 산화반응에 관한 연구)

  • 金京林
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1985
  • This study is concerned with the oxidation of carbon monoxide on platinum and platinum-palladium catalysts. Catalysts were made by the impregnation method and flow reactor was used in the catalytic reaction. As for the mixed gases, carbon monoxide concentration varied from 1 to 4% and that of oxygen from 1 to 4%. $N_2$ was used as carrier gas and GHSV varied from 24, 000 $h^{-1} to 60, h^{-1}$. The temperature range was from 200 to $600^\circ$C. It was also taken into consideration that the heat and mass transfer resistance of our catalysts was negligible in the study. Experimental results showed that platinum-palladium catalyst was about 1.5-3.9% superior to platinum catalyst in conversion yield. When we used platinum-palladium catalyst, we observed that carbon monoxide oxidation was found to be 1 st order with respect to carbon monoxide concentration. Activation energy of the catalyst was 23.5 kcal/mol.

  • PDF

Improved Reduction of Carbon Monoxide by Highly Efficient Catalytic Shift for Fuel Cell Applications

  • Youn, M.J.;Chun, Y.N.
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.192-196
    • /
    • 2008
  • The generation of high purity hydrogen from reformed hydrocarbon fuels, or syngas, is essential for efficient operation of the fuel cell (PEMFC, Polymer Electrolyte Membrane Fuel Cell). Usually, major components of reformed gas are $H_2$, CO, $CO_2$ and $H_2O$. Especially a major component, CO poisons the electrode of fuel cells. The water gas shifter (WGS) that shifts CO to $CO_2$ and simultaneously produces $H_2$, was developed to a two stage catalytic conversion process involving a high temperature shifter (HTS) and a low temperature shifter (LTS). Also, experiments were carried out to reduce the carbon monoxide up to $3{\sim}4%$ in the HTS and lower than 5,000 ppm via the LTS.

Removal of Carbon Monoxide from Anthracite Flue Gas by Catalytic Oxidation (I) (촉매반응에 의한 연탄 연소가스로부터 일산화탄소의 제거 (제1보))

  • Chung Ki Ho;Lee, Won Kook
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.431-437
    • /
    • 1976
  • On the condition of adequate air supply, complete removal of carbon monoxide,occurred above $650^{\circ}C$. Using catalysts, the oxidation of carbon monoxide occurred at lower temperatures; on both $MnO_2 \;and\;30%\;MnO_2-70%\;CuO\;at\;250{\circ}C,\;on\;CuO\;at\;450{\circ}C,\;on\;50%\;MnO_2-50%\;CuO\;at\;200{\circ}C,\;and\;on\;70%\;MnO_2-30%\;CuO\;at\;180{\circ}C$. Manganese dioxide (p-type) showed higher activity than cupric oxide (n-type) and a catalyst consisting of 60% $MnO_2-40%$ CuO had the highest activity of all the $MnO_2$-CuO mixture. Over the range of transitional temperature, carbon monoxide removal efficiency decreased linearly with increasing inlet carbon monoxide concentration while temperature was fixed. Residence time of gases in the catalytic reactor, in the range of 0.9 to 1.8 seconds, gave no effect on carbon monoxide conversion.

  • PDF

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor (고정층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향)

  • Kim, Sang-Bum;Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2004
  • The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst. Reaction temperatures were changed from 600 to $850^{\circ}C$, and reactants flow rates were changed from 100 to 200 mL/mim. There were no significant changes in the methane conversion observed in the range of temperatures used. It is possibly stemmed from the nearly total exhaustion of oxygen introduced. The selectiveties of hydrogen and carbon monoxide did not largely depend on the reaction temperature. The selectivities of hydrogen and carbon monoxide were 96 and 90%, respectively. Carbon deposition observed was the smallest at $750^{\circ}C$ and the largest at $850^{\circ}C$. It is found that the proper reaction temperature is $750^{\circ}C$. The best reactant flow rate was 150 ml/min.

A Study on the Steam-Hydrocarbon Reforming Catalysts (탄화수소의 수증기개질 촉매에 관한 연구)

  • Lee Mook Kwon;Tae Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.55-63
    • /
    • 1971
  • In this study, several nickel catalysts for the steam-hydrocarbon reforming process were prepared from various nickel salt, magnesium oxide, alumina and kaolinite. The activity and strength of the catalysts were investigated. 1. The proper composition of the calcined catalysts are: NiO (5-15%)-MgO(10-20%)-$Al_2O_3$(10-40%)-Kaolinite(50-80%). 2. The admixed or cosedimented ingredients of the catalysts was pelletized and calcinated at 1000 or $1150^{\circ}C$. Calcination at $1150^{\circ}C$ for an hour was optimum. 3. The water to oil ratio (W/O) for reforming of hexane should be above 7 mole/mole. As the W/O increases, more carbon dioxide and hydrogen, but less carbon monoxide was produced. Also carbon deposition become lessen at higher W/O. 4. Maximum conversion had attained at about $850^{\circ}C$. As the reaction temperature increases, more carbon monoxide and hydrogen, but less carbon dioxide and lower hydrocarbon was produced. 5. The percent conversion at $850^{\circ}C$ was about 80%, using a catalyst which the nickel oxide content are 5%.

  • PDF

Conversion of Carbon Fiber into Silicon Carbide Fiber by Pack-Cementation

  • Joo, Hyeok-Jong;Kim, Jung-Il;Lee, Jum-Kyun
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2000
  • Carbon fiber was reacted with gaseous silicon monoxide which is produced from pack-powder mixture at elevated temperature. As a result of the reaction, two kinds of SiC fiber were obtained. The first one was SiC fibers which were converted from carbon fiber. The fiber is constituted with polycrystal like fine grains or monolithic crystals that have a size from sub-micron to $10\;{\mu}m$. Their size depends on the temperature during the conversion reaction. The second one was ultra-fine SiC fibers that were found on the surface of the converted SiC fibers. The ultra-fine fibers have diameters from 0.08 to $0.2\;{\mu}m$ and their aspect ratio were larger than 100. The chemical composit ion of the ultra-fine fibers was analyzed using an Auger electron spectroscopy. In result, the fibers consist of 51% silicon, 38% carbon and 11% oxygen by weight.

  • PDF

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

Development and validation of diffusion based CFD model for modelling of hydrogen and carbon monoxide recombination in passive autocatalytic recombiner

  • Bhuvaneshwar Gera;Vishnu Verma;Jayanta Chattopadhyay
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3194-3201
    • /
    • 2023
  • In water-cooled power reactor, hydrogen is generated in case of steam zirconium reaction during severe accident condition and later on in addition to hydrogen; CO is also generated during molten corium concrete interaction after reactor pressure vessel failure. Passive Autocatalytic Recombiners (PARs) are provided in the containment for hydrogen management. The performance of the PARs in presence of hydrogen and carbon monoxide along with air has been evaluated. Depending on the conditions, CO may either react with oxygen to form carbon dioxide (CO2) or act as catalyst poison, reducing the catalyst activity and hence the hydrogen conversion efficiency. CFD analysis has been carried out to determine the effect of CO on catalyst plate temperature for 2 & 4% v/v H2 and 1-4% v/v CO with air at the recombiner inlet for a reported experiment. The results of CFD simulations have been compared with the reported experimental data for the model validation. The reaction at the recombiner plate is modelled based on diffusion theory. The developed CFD model has been used to predict the maximum catalyst temperature and outlet species concentration for different inlet velocity and temperatures of the mixture gas. The obtained results were used to fit a correlation for obtaining removal rate of carbon monoxide inside PAR as a function of inlet velocity and concentrations.