• Title/Summary/Keyword: Carbon market

Search Result 282, Processing Time 0.026 seconds

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

A Practical Engineering for Advanced Barrier Materials: A Brief Review (차세대 Barrier 물질 개발 동향)

  • An, Hee Seong;Lee, Jong Suk
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.85-98
    • /
    • 2015
  • A global trend of replacing metal or glass containers with polymer-based packaging materials has been prevalent in the food packaging industry due to their ease in processibility, excellent transparency, and good cost efficiency. Barrier polymers tend to show low permeabilities for atmospheric gases such as oxygen, carbon dioxide, and water vapor, which allow them to be utilized in the food and beverage packaging industry. With the current global trend, expansion of polymeric packaging materials to new markets such as oxygen sensitive juices, flavored water, and energy drinks requires improved $CO_2$ and $O_2$ barrier properties. The improvement of the existing polymer-based barrier platform will enable a rapid market impact. In this paper, the current barrier technologies such as (1) antiplasticization-induced barrier materials, (2) synergistic effect of antiplasticization and crystallization, (3) new barrier polymers, (4) nanocomposite materials, and (5) polymer blending are introduced with their characterization techniques for the development of advanced packaging materials.

A fundamental study for applying of Unit modular housing production system in the domestic (국내 유닛 모듈러(Unit Modular) 주택생산시스템 적용을 위한 기반 구축에 관한 연구)

  • Lee, Du-Heon;Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.3-11
    • /
    • 2013
  • The government has made a lot of efforts to realize 'low-carbon green growth', one of the national policy agendas, throughout the whole industries. The construction sector is not an exception, and technological developments are active to reduce energy consumption and greenhouse gas emission. In particular, buildings occupy more than 20% of the total national energy consumptions. Thus, it can be said that increasing energy efficiency of the residential buildings and reducing CO2 emission are the urgent national agenda. Moreover, as ordinary people find it more and more difficult to get a lease on housing, which has become an important social issue recently, a housing production system that can actively respond to market demands is in urgent need. To build an eco-friendly system that can maximize efficiency in construction, this study attempts to examine and analyze the modular housing production system in the county and to find its problems. By suggesting the ways to improve the system, it aims to prepare for the base to revitalize the unit modular housing production system.

Urban energy transition and energy autonomy in Daegu (대구의 도시 에너지 전환과 에너지 자립)

  • Choi, Byung-Doo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.647-669
    • /
    • 2013
  • Depletion of fossil fuels and sharp rise of international oil price as well as climate worming and frequent environmental disasters have required to strengthen resource(esp. energy) and environmental policy and discourse. And hence highly influential discourses and policies such as the concept of sustainable development and strategy for carbon regulation have been developed and pursued world-widely. But these concept and strategy have seemed to be subsumed in the process of neoliberalism, so as to have little effective results. This leads us to energy transition and energy autonomy or autarky as alternative strategic and normative concepts. Daegu has shown strong interests in urban energy problems relatively earlier than other cities, and developed the so-call 'Solar City' project. But it could not properly tackled with the problems, while tending to meet with the global imperatives. This paper considers urban energy problems and energy policy of Daegu with its significance and limitations, and suggests 4 principles for urban energy transition and autonomy with some concrete alternative measures; that is, the transition from fossil and nuclear energy to renewable energy, the transition from supply-led policy to demand side focusing policy, the transition from central governing energy system to locally distributed one, and the transition from market-dependent management to citizen-participatory energy governance.

  • PDF

A approach to standardization & promotion strategy on telepresence (텔레프레즌스 표준화 및 활성화 방안)

  • Min, J.H.;Park, J.Y.;Jung, O.J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.817-820
    • /
    • 2013
  • With the advent of smart age, the concern on smart work has gradually increased in solving our social problems including low birth, aging, low productivity and green growth with low carbon as well as encouraging the balance between work and life. Especially, the competitiveness among companies and countries to preoccupy the advanced telepresence technologies and lead the international standardization based on them have increased more than ever before. But, in our country due to the lack of core technology infrastructure and barrier to current organizational culture, R&D achievement and promotion of deployment on telepresence have not been sufficient. Therefore, It is essential to make standardization strategy and do systematic implementation for core technology which leads the telepresence market in order to fit such an environment and introduce smart work as soon as possible. Accordingly, this paper suggests the direction of standardization and implementation on telepresence for our country to lead telepresence technology and standardization through analysing the current introducing situation and technology/standardization trend.

  • PDF

Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design (비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발)

  • Hong, Sung-Moon;Kim, Dae-Sung;Kim, Min-Cheol;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

Public Preferences for Replacing Hydro-Electricity Generation with Coal-Fired Power Generation (석탄화력 발전 대비 수력 발전에 대한 국민 선호도 분석)

  • Choi, Hyo-Yeon;Ryu, Mun-Hyun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.164-171
    • /
    • 2015
  • Although coal-fired power generation has played a role as base load unit, it has incurred various social costs in the process of generating and providing electricity. It is necessary to extend the proportion of low-carbon power generations, and reduce the ratio of coal-fired power generation to cope with global climate changes. This study, therefore, attempts to estimate the public's willingness-to-pay (WTP) for substitution of supplied electricity from hydro-electricity generation, a representative renewable energy, for coal-fired power generation. To this end, we apply the contingent valuation (CV) method, widely used technique when valuing non-market goods, to elicit the public's WTP. In addition, a spike model is employed to consider zero WTPs. After the empirical analysis with 1,000 households CV survey data, the results show that mean household's WTP for replacing supplied electricity from hydro-electricity generation with coal-fired power generation is estimated to be about 54 KRW per kWh. The results of this study are expected to contribute to determining energy-mix and provide benefit information of hydro-electricity generation.

Correlation Analysis between the Renewable Energy Source Generation and the Utilization for Smart Grid in Korea (한국의 스마트 그리드를 위한 신재생에너지원 생산과 활용률 간의 상관관계 분석)

  • Hyun, Jung Suk;Park, Chan Jung;Lee, Junghoon;Park, Kyung Leen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.347-353
    • /
    • 2017
  • In order to prohibit global warming, various kinds of regulatory policies have been established in the whole world. One example is the establishment of the Renewable Portfolio Standard. It requires the increased portion in energy production from renewable energy sources. The Republic of Korea adopted the act on the promotion of the development, use, and diffusion of new and renewable energy since 2012. However, in spite of the effort on the consideration of the renewable energy sources, it was reported the carbon intensity of electricity in Korea was not that low in 2015. Thus, it is required to examine the recent state of the utilization degree of the renewable energy sources in Korea. This paper analyzed the statistical data provided by Korea Power Exchange (KPX) to examine any problems and solutions for generating electricity from the renewable energy sources. We focused on the generation capacity provided by the power plants participated in the market, the electric power trading amount, and the utilization coefficient for 10 years. By analyzing the data, we provide an alternative to solve some imbalance among the factors contributing to renewable energy use.

Contribution of Large-Scale PV Plants in the Respective Region of the Jeju Island to Electric Power during Summer Peak Times (제주도 지역별 대용량 태양광발전소들의 여름 피크타임 기여도 연구)

  • Baatarbileg, Ankhzaya;Ko, Suk-Young;SaKong, June;Kwon, Hoon;Lee, Gae-myoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1873-1878
    • /
    • 2017
  • Both the introduction of the Renewable Energy Portfolio Standard (RPS) system into the electric energy market in 2012 and a decrease in the cost of constructing photovoltaic (PV) power plants have been increasing the number of MW PV plants in South Korea. Jeju Island is located at the center of three nations, South Korea, China and Japan, and its provincial government declared in 2012 that the island will be a clean region where greenhouse gases are not emitted by 2030. The Jeju provincial government is now doing its best to install PV plants and wind farms to realize a carbon-free island. In this study we investigated contribution of MW PV plants to the power of the electric grid during summer peak times on Jeju Island. Mt. Halla the highest mountain in South Korea, is located at the center of Jeju Island, and we divided the island into four regions and carried out analyses of a total of 24 PV plants. The average contribution of the PV plants in the respective region to electric power of Jeju Island during summer peak times was investigated and compared with those of the other regions. The best average contribution during the 12.5% maximum load period was obtained from the PV plants in the western region, and the value was 33% during 2015 and 2016.

An Integrated Interface based on CIM between Energy Management System and Heterogeneous Systems (에너지 관리 시스템(EMS)과 이기종 시스템간 CIM 기반의 통합 인터페이스)

  • Kang, Dong Hyun;Lee, Yong Ik;Park, Jong Ho;Shin, Yong-Hack
    • Journal of Software Engineering Society
    • /
    • v.24 no.3
    • /
    • pp.111-115
    • /
    • 2011
  • With the emergence of the smart grid era, the interest in green energy which reduce carbon emissions and environment-friendly smart grid which combines the advantages of power and IT technology is increasing around the world. To use the smart grid effectively heterogeneous systems such as EMS, MOS and WIS must be linked together. However, additional interface should be developed to link EMS and heterogeneous systems since IEC has only defines the interface for EMS. Especially, to link legacy system and new system, some software might need to be designed and developed because separate interfaces for connection can be developed depending on each system and environment. In this paper, we propose an integrated interface based on CIM for interconnection between systems. A proposed interface can integrate messages of heterogeneous system and will be able to reduce costs that could be incurred by the removal of the existing system and the addition of the new system.

  • PDF