• Title/Summary/Keyword: Carbon fiber tow

Search Result 18, Processing Time 0.02 seconds

Fabrication of Carbon Fiber/Aluminum Preforms using Cylindrical Sputtering System (원통형 스퍼터링 장치를 이용한 탄소섬유/알루미늄 프리폼의 제작)

  • Kim, Y.C.;Han, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • The purpose of this study is to prepare a high-strength Fiberglass Reinforced Metal (FRM). Aluminum covering over carbon fibers (CF) was made to increase their wettability to molten aluminum. A cylindrical sputtering apparatus was used for the covering. One tow of carbon fibers was placed along the central axis of the cylindrical target. Aluminum was uniformly coated around the carbon fiber tow. But in case of CF without sizing treatment, aluminum spread into the inside of the tow. Preforms of carbon fiber/aluminum composite were made by impregnating carbon fiber with molten aluminum. Contact angle of molten aluminum to the aluminum-coated carbon fiber was about $30^{\circ}$. The fractured section of preform was observed by SEM, which showed that molten aluminum wetted the outer part of the tow well but had not penetrated into the center, and that adhesion between CF and aluminum matrix was in good condition.

Carbon Fiber Tow Spreading Technology and Mechanical Properties of Laminate Composites (탄소섬유 펼침 기술 및 이를 적용한 적층 복합재료의 기계적 특성)

  • Park, Sung Min;Kim, Myung Soon;Choi, Yoon Sung;Lee, Eun Soo;Yoo, Ho Wook;Chon, Jin Sung
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.249-253
    • /
    • 2015
  • This paper reports a study on a method for achieving lightweight thermoplastic laminate composites referred to as tow spreading technology. Thickness of an unspread 12 K carbon fiber tow is reduced by increasing the tow width from 7 mm to 20 mm. The polypropylene (PP) film was used to stabilize and impregnate the spread tow, covering it into a partially consolidated prepreg: 12 K carbon fiber spread tow/PP. Laminates were fabricated from the spread tow prepreg and control laminate composites were produced from unspread tow prepreg consisting of 12 K carbon fiber and PP. The void content, tensile and flexural properties of the composite laminates were investigated. Consequently, the spread tow laminate composite exhibited lower void content and improved mechanical properties.

Evaluation of Process Performance and Mechanical Properties according to Process Variables of Pneumatic Carbon Fiber Tow Spreading (공기에 의한 탄소섬유 스프레딩 공정 변수에 따른 프로세스 성능 및 기계적 물성 평가)

  • Roh, Jeong-U;Baek, Un-Gyeong;Roh, Jae-Seung;Nam, Gibeop
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.390-394
    • /
    • 2020
  • The carbon fiber has been damaged via tow spreading process for carbon fiber spread tow. The fiber damage is caused by friction between equipment and fibers or between fibers and fibers in the process of spreading. As a result, mechanical properties are decreased due to differences in process via material and equipment condition. Therefore, minimizing fiber damage have to be considered in the process. In this study, the change in carbon fiber pneumatic spreading process was observed by according to the filament count, sizing content of carbon fiber and process variables in spreading equipment (fiber tension at the beginning, air temperature in spreading zone, vacuum pressure in spreading zone). Tensile strength was evaluated using samples prepared under optimal conditions for each of the carbon fiber varieties, and mechanical properties were reduced due to damage on the carbon fiber.

Some Consideration on Structure of Carbon fibers during Hot Stretching (고온 연신 열처리 탄소섬유의 구조 고찰)

  • Kim, Hong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.30-34
    • /
    • 1999
  • A polyacrylonitrile(PAN)-based carbon fiber tow was heat-treated by directly passing electric current through the tow. The effects of the stretching stress applied during high temperature heat-treatment of PAN-based carbon fibers were investigated by measuring the electric resistance changes taking place during the internal resistance heating. The structure parameters characterizing the stacks of carbon layer, such as interlayer spacing, sizes and orientation of the carbon fibers heat-treated with hot-stretching were evaluated as a function of surface temperature of tow during heat treatment in the range of $1000~2400^{\circ}C$. Though the layer extent in the fiber axis direction depends strongly on the electric resistance, the changes in a crystallite parameter is independent of the longitudinal strain.

  • PDF

Recent Research Trends in Carbon Fiber Tow Prepreg for Advanced Composites (탄소섬유 토우프리프레그 최신 연구동향)

  • Park, Yongmin;Hwang, Tae Kyung;Chung, Sangki;Park, Nohyun;Jang, Jun Yeol;Nah, Changwoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-101
    • /
    • 2017
  • Tow Prepreg is the intermediate material for filament winding process that has been "pre-impregnated fiber tow" with resin system. As "dry filament winding" process emerges as a reliable alternative to conventional filament winding (called "wet filament winding") process, interest in tow prepreg as a material for dry filament winding is rising as well. In this article, we have reviewed the recent research trends in carbon fiber tow prepreg for high-performance rocket motor cases, fuel tanks for hydrogen vehicles and other high-quality commercial pressure vessels.

Bias Extension and Biaxial Tests for Carbon Dry Fabrics (탄소섬유 건직물의 일방향 편향 인장실험과 이축 인장실험)

  • 장승환;전성식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.99-102
    • /
    • 2003
  • This paper aims to observe the micro-mechanical behaviour of tow geometry during deformation of dry woven carbon-fiber fabric. With the increment of shear angle fabric experiences 'lock-up'phenomenon. In this paper, deformation of micro-mechanical parameters such as tow interval, change in tow amplitude and wavelength are investigated. To observe the micro-deformation of the fabric structure, appropriate specimens from bias extension and biaxial tests are sectioned and observed under the microscope. It was found that different loading conditions cause geometric deferences in the tow architecture.

  • PDF

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

Study on the ablation structures of Carbon/Phenolic composites used PAN based carbon fiber (PAN계 탄소섬유를 이용한 Carbon/Phenolic 복합재의 삭마구조 특성 연구)

  • Im, Yeon-Su;Kim, Dong-Gyu;Park, In-Seo;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.339-348
    • /
    • 1994
  • The study has been conducted to know ablation microstructures and characteristics in carbon /phenolic composites. Ablation properties depend on mole fraction of $H_2O$ and $C0_2$ gas which were produced by reaction between propellant and oxidizer. However, the results of this study shown that the ablation also depended on weaving structure, density of fabric, and tow size of carbon fiber. 3K 8HS fabric showed superior ablation resistance to others, 3K twill and 12K 8HS fabric structures.

  • PDF

Measurement Method for Constituent Contents of Carbon Fiber/Epoxy Composites Using Thermogravimetric Analyzer (열중량분석기를 적용한 탄소섬유/에폭시 복합재의 구성재 함유율 측정 기법)

  • Jang, Jeong Keun;Cha, Jae Ho;Lee, Bo Mi;Yoon, Sung Ho
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.341-345
    • /
    • 2020
  • We propose a measurement method for evaluating constituent contents of carbon fiber/epoxy composites through a thermogravimetric analyzer (TGA). The sample used in the test was taken from a strand specimen made of carbon fiber/epoxy tow prepreg, and the change in weight of the sample over time was measured in real time. Using a field emission scanning electron microscope (FE-SEM), we examine the thermal damage condition of the carbon fiber depending on whether resin was removed or not. We find that it was possible to test even a small amount of sample when using TGA vis-à-vis using a conventional muffle furnace. In addition, TGA enables the temperature and exposure time to be controlled, allowing the constituent contents of composite materials to be efficiently and quantitatively evaluated.

Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method (전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구)

  • Kwon, Dong-Jun;Choi, Jin-Yeong;Shin, Pyeong-Su;Lee, Hyung-Ik;Lee, Min-Gyeong;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • As a new method to predict the degree of dispersion in carbon nanocomposites, the electrical resistance (ER) method has been evaluated. After CNT epoxy resin was dropped on CF tow, the change in electrical resistance of carbon fiber tow was measured to evaluate dispersion condition in CNT epoxy resin. Good dispersion of CNTs in carbon nanocomposite exhibited low change in ER due to wetted resin penetrated on CF tow. However, because CNT network was formed among CFs, non-uniform dispersion occurred due to nanoparticle filtering effect by CF tow. The change in ER for poor dispersion exhibited large ER signal change. The change in ER was used for the dispersion evaluation of CNT epoxy resin. Correlation between interlaminar shear strength (ILSS) and dispersion condition by ER method was established. Good CNT dispersion in nanocomposites led to good interfacial properties of fiberreinforced nanocomposites.