• Title/Summary/Keyword: Carbon fiber/Epoxy

Search Result 479, Processing Time 0.026 seconds

Interfacial Evaluation and Microfailure Mechanisms of Carbon Fiber/Bismaleimide (BMI) Composites using Tensile/compressive Fragmentation Tests and Acoustic Emission (인장/압축 Fragmentation 시험법과 음향방출을 이용한 Carbon Fiber/Bismaleimide (BMI) Composites 의 계면 평가와 미세파괴 메커니즘 연구)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.79-83
    • /
    • 2000
  • Interfacial and microfailure properties of carbon liber/bismaleimide (BMI) composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Since BMI is rather difficult matrix to apply for the conventional fragmentation test because of its too low elongation and too brittle and high modulus properties, dual matrix composite system was applied. After carbon fiber/BMI composite was prepared for rod shape by controlling differing curing stage, composites rod was embedded in toughened epoxy as outer matrix. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile testing, whereas the diagonal slippage in fiber ends was observed during compressive test. On the other hand, AE amplitudes of BMI matrix fracture were higher than carbon fiber tincture under tensile test because BMI matrix has very brittle and high modulus. The waveform of signals coming from BMI matrix fractures was consistent with AE amplitude result under tensile tests.

  • PDF

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

Impact Characteristics on the Laminated Shell for CF/Epoxy Composite (CF/Epoxy 복합재 적층쉘의 충격특성)

  • 양현수;정풍기;김영남;이종선
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.311-323
    • /
    • 2004
  • This paper is to study the energy absorption characteristics of CF/Epoxy(Carbon Fiber/Epoxy Resin) laminated shell with the various curvatures subjected to transverse impact loadings under the low impact velocity in consideration of design of structural members for use of transportation machine, which are consisted of the characteristics of high stiffness, strength and lightweight. The curvature radius are associated with the energy absorption characteristics of CF/Epoxy laminated shell which is brittleness material. In all tests, maximum load of CF/Epoxy laminated plate is higher than that of laminated shell with curvature, but maximum deflection is lower. And then absorbed energy of laminated shell with curvature is higher than laminated plate(curvature radius is unlimited), As curvature radius is increased, the absorbed energy is increased in laminated shell with curvature.

Subscale Main Wing Design and Manufacturing of WIG Vehicle Using Carbon Fiber Composites

  • Park, Hyun-Bum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-4
    • /
    • 2017
  • This work dealt with design and manufacturing of WIG vehicle wing using carbon/epoxy composite materials. In this study, structural design and analysis of carbon composite structure for WIG craft were performed. Firstly, structural design requirement of wing for WIG vehicle was investigated. After structural design, the structural analysis of the wing was performed by the finite element analysis method. It was performed that the stress, displacement and buckling analysis at the applied load condition. And also, manufacturing of subscale wing using carbon/epoxy composite materials was carried out. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis and test, it was confirmed that the designed wing structure is safety.

Interlaminar Shear Strength of the Radar Absorbing Structure with Inserted Short Carbon Fiber Layers (단탄소 섬유층이 삽입된 전자파흡수구조의 층간전단강도에 관한 연구)

  • Jin, Do-Hyeon;Jang, Min-Su;Jang, Woo-Hyeok;Kim, Chun-Gon
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.13-17
    • /
    • 2022
  • RADAR Absorbing Structure (RAS), one of stealth technologies, is a multifunctional composite that is capable of supporting load and absorbing electromagnetic waves. In order to supplement the shortcomings of the existing RAS, a hybrid RAS in which the short carbon fiber layers were inserted has been proposed. However, the inserted short carbon fiber layers may affect the mechanical properties of the structure. Therefore, this study measured the interlaminar shear strength (ILSS) of the hybrid RAS with the inserted short carbon fiber layer. The ILSS of hybrid composite with different areal densities of the short carbon fiber layer was measured to investigate the effect of changes in the areal density of the short carbon fiber layer on the ILSS of the structure. In addition, the ILSS of the 4 kinds of the hybrid RAS were measured and compared with the ILSS of glass/epoxy. As a result of the measurement, it was confirmed that the short carbon fiber layer did not significantly affect the ILSS of the hybrid composite and the hybrid RAS.

Evaluation of the Change in Adhesion Strength of GFRP and CFRP with Carbon Nanotube Contents in Epoxy Adhesive with Moisture Change during Curing (에폭시 접착제의 탄소나노튜브 함량과 경화시 습도 변화에 따른 GFRP 및 CFRP의 접착강도 변화 평가)

  • Park, Hee-Woong;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As the wind blades become larger, they tend to be made by mixing glass fiber and carbon fiber, and it is important to increase the properties of the adhesive which adheres the two materials. The physical properties of the adhesive vary depending on the content of the additive and curing conditions. In this study, the change in adhesion strength with the difference between the CNT (Carbon Nanotube) content of the epoxy adhesive and the humidity during curing was evaluated. GFRP and CFRP specimens were prepared and adhered using an epoxy adhesive, and to examine changes in characteristics with carbon nanotube contents and with the humidity during curing of the epoxy adhesive, adhesion strength was evaluated by dividing the difference between carbon nanotube content and humidity. To find out the change with the CNT contents, the intelaminar shear strength (ILSS) test was performed by dividing the contents of the CNT into 0, 0.1, 0.3, 0.5, and 1 wt%, and to confirm the change with the humidity conditions, the adhesive was cured by dividing the humidity by 20, 50, and 80%. From the result of the experiment, the adhesive force decreased when the content was excessively large, although the adhesive property was enhanced by adding CNT to the epoxy adhesive. In addition, it was confirmed that the adhesion characteristics were not changed as the humidity increased.

Study on the Flow Characteristics of the Epoxy Resin w.r.t. Sizing Materials of Carbon Fibers (탄소섬유 사이징에 따른 에폭시 수지 유동 특성에 관한 연구)

  • Lim, Su-Hyun;On, Seung Yoon;Kim, Seong-Su
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.379-384
    • /
    • 2018
  • This paper aims to study flow characteristics of epoxy resin w.r.t. the sizing agents treated on the carbon fibers which have the same surface morphologies before sizing treatment. Dynamic contact angle (DCA) was measured to evaluate wettability of a single carbon fiber. Wicking test and Vacuum Assisted Resin Transfer Molding (VARTM) were performed to find relation between DCA measurement results and impregnation characteristics. In addition, surface properties of the carbon fibers such as surface free energy and chemical compositions were measured and interfacial shear strength (IFSS) between the carbon fiber and the resin were experimentally characterized by using micro-droplet tests. According to these experimental results, the sizing agent for carbon fibers should have appropriate level of surface free energy and good chemical compatibility with the resin to reconcile resin flow characteristics and interfacial strength.

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.