• Title/Summary/Keyword: Carbon fiber(CF)

Search Result 153, Processing Time 0.027 seconds

Estimation of Flexural Rigidity of R/C Beam Strengthened with CFS subjected to repeated loadings (반복하중을 받는 CFS로 보강된 R/C 보의 휨 강성 평가)

  • Kim, Chung-Ho;Jang, Jong-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.231-238
    • /
    • 2004
  • The deterioration of the flexural capacity by progressive crack and over deflection in R/C bridges is developed actually from the dynamic repeated loading due to vehicle traffics. Such a fact suggest a necessities of confirmation and estimation of the data acquired from monotonic incremental loading test. Therefore, this study carry out the monotonic incremental loading test and dynamic repeated loading test in R/C beams strengthened with CFS. By dynamic repeated loading test, the experiments confirmed the validities and fittness of the results acquired from monotonic incremental loading test and estimated the characteristics of the moment-curvature, degradation of the flexural rigidity, crack and failure.

Multi-stage Compression Molding Technology of Fast Curing CF/Epoxy Prepreg (속경화용 탄소섬유/에폭시 프리프레그의 다단 압축 성형기술)

  • Kwak, Seong-Hun;Mun, Ji-Hun;Hong, Sang-Hwui;Kwon, Soon-Deok;Kim, Byung-Ha;Kim, Tae-Yong
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.269-276
    • /
    • 2021
  • PCM (Prepreg Compression Molding) process is a high-speed molding technology that can manufacture high-quality CFRP (Carbon Fiber Reinforced Plastic) parts. Compared to the autoclave process, it generates less waste and can significantly reduce cycle time, so various studies are being conducted in the aerospace and automobile industries. In this study, in order to improve the quality of the PCM process, a molding method was developed to increase the compression pressure of the press step by step according to the curing behavior of the prepreg. It was confirmed that this multi-stage compression molding technology is a good means to produce high-quality CFRP products and shorten cycle times. And, the laminated prepreg at room temperature was immediately put into the mold and preheated and molded at the same time, so that it could be molded without a separate preheating process. In addition, as a result of applying the same process conditions optimized for flat plate molding to three-dimensional shapes, a product similar to a flat plate in appearance could be made without the process of establishing process conditions.

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates Under High Temperature (고온분위기하에서 탄소섬유강화 복합재적층판의 충격손상과 잔류굽힘강도)

  • 양인영;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1930-1938
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CFRP orthotropic laminated plates, which have two-interfaces$[0_6^{\circ}/90_7^{\circ}]_s$ and four-interfaces$[0_3^{\circ}/90_6^{\circ}/0_3^{\circ}]_s$. The interrelations between the impact energy vs. delamination area, the impact energy vs. residual bending strength, and the interlayer delamination area vs. the decrease of the residual flexural strength of carbon fiber epoxy composite laminates subjected to FOD(Foreign Object Damage) under high temperatures were experimentally observed.

Interlaminar Fracture Toughness of CFRP Laminate Plates by Resin Content (CFRP 적층판의 수지함량이 층간파괴인성치에 미치는 영향)

  • 강태식;김지훈;심재기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.675-678
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon fiber reinforcement plastics). Specimens used in this experiment are CF/EPOXY laminated plates. In this experiments, Split Hopkinson s Bar test was applied to dynamic and notched flexure test. The mode II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reactions at the supported points. As an experimental result, the vibration amplitude of 〔$0_{10}F_4/0_{10}$〕laminates appear more than that of 〔0_{10}/F_2/0_{10}$〕laminates for the J-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen with the increase of displacement velocity becomes great at a measuring point with in range of measurement.

  • PDF

Study on Strengthening Effect and Failure Behavior of CFS Strengthened High Strength RC Columns after Cross -sectional Shape Modification (4각기둥의 단면형상 변형 후 CFS로 보강한 고강도 철근 콘크리트 기둥의 보강효과 및 파괴거동 연구)

  • Jun Kyung-Suk;Kim Jang-Ho;Park Seok-Kyun;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.259-262
    • /
    • 2005
  • Numerous studies showed that safety and serviceability of many concrete infrastructures and buildings built in 1970's have capacity less than their design capacities and thereby require immediate retrofitting. Currently, these aged concrete structure are being repaired using many repair and strengthening methods developed in the past. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete columns that can effectively improve the performance of high strength concrete columns is developed. The square high strength concrete column's cross-sectional shape is modified to octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is wrapped using Carbon Fiber Sheets (CFS). The method allowed the maximum usage of confinement effect of externally wrapped CFS, which resulted in improved strength and ductility of repaired high strength concrete columns.

  • PDF

Analytical Study on the Reinforced Concrete Beams Strengthened with Steel Plate and Carbon Fiber Composites (강판 및 탄소섬유로 보강된 철근콘크리트보에 대한 해석적 연구)

  • 심종성;배인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.129-137
    • /
    • 1997
  • 본 논문의목적은 단조증가하중을 받는 강판 및 탄소섬유 sheet 로 보강된 철근콘크리트 단순보의 역학적 거동특성을 규명하기 위한 것이다. 본 연구의 목적을 달성하기 위하여 단부응력해석이 고려된 비선형 해석프로그램을 개발하였으며, 적용된 재료비선형모델은 콘크리트인 경우 tensile strain softening이 고려된 응력-변형율선도, 철근과 강판에 대해서는 bilinear 모델, 그리고 탄소섬유 sheet에 대해서는 완전탄성체의 모델이 적용되었다. Debonding 에 대해서는 보강재 단부의 전단응력에 의한 콘크리트박리하중을 Roberts의 해석적방법을 수정하여 계산하였다. 또한 개발된 프로그램은 실험결과 및 ADINA에 의한 해석결과와 비교하였으며, 보강단면 등에 따른 거동을 잘 예측하는 것으로 나타났다.

Performance Evaluation on the Reinforcing Material of Plastic Composites for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 플라스틱 복합재료용(複合材料用) 강화재(强化材)의 성능평가(性能評價))

  • Kim, Dong-Jin;Murakami, Ri-ichi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1048-1054
    • /
    • 1999
  • It is important to study the shielding effectiveness(SE) of reinforcing material of plastic composite materials against the electromagnetic(EM) waves. In this paper, SE of the shielding material of EM waves was investigated with actual experiments. The materials used in this study were made up of film, fiber and powder of conductive materials - Cu, Al, CF etc. Also, The resin film was used as matrix. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that copper, aluminum and carbon fiber were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of interval of wires on the SE were studied when the orientation and the space of Cu wires were changed. The SE strongly depended on the. orientation and the space of the Cu wire. SE decreased as the space of the Cu wires was increasing.

Improvement of Flexural Capacity of Reinforced Concrete Beams Retrofitted by CFS (CFS로 보강된 철근콘크리트 보의 휨내력향상효과에 관한 연구)

  • Lee, Yong Taeg;Lee, Li Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.203-211
    • /
    • 1999
  • This study is to examine the feasibility of carbon fiber sheet(CFS), a kind of fiber reinforced plastic(FRP), for a repair and reinforcement of R/C beams. The flexural strength of R/C beams, that were preloaded and then the cracks were repaired, maintains that of the uncracked R/C beams. The flexural strength of R/C beams increases with the reinforcement of CFS. In order to practically apply the repair and reinforcement method, further research is needed for the distribution, amount, and bond of CFS. In this study, an experiment was conducted for R/C beams reinforced with CFS, for various wrapping method and amounts of CFS. Experimental results showed the wrapping method increasing the bond area and amount of CFS layer caused the increase in the strength of the beams. It is found that the strength of CFS should be used as 70% of the maximum strength in retrofitting reinforced concrete beams in evaluating flexural capacity on the basis of ultimate strength design method.

  • PDF

Earthquake-Resistant Capacity of RC Columns Retrofitted by Fiber-Steel Composite Plate (복합판으로 보강된 철근콘크리트 기둥의 내진성능연구)

  • Park Tae-Man;Park Seong-Min;Hong Hyeok-Jun;Kang Gyeong-Soo;Yoon Jeong-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.113-120
    • /
    • 2005
  • The purpose of this study is to investigate the strength and ductility improvement of columns retrofitted by steel-fiber composite plate. Test specimens strengthened by three different materials - steel plate(SP), carbon fiber sheet(CF) and fiber-steel composite plate(CP) - were tested under cyclic lateral load with a constant axial load equal to $20\%$ of the axial compression capacity. The structural capacity of composite plate was good or better than that of other retrofitting materials. Test results from all retrofitted specimens showed that considerably higher retrofitting amount was required for strength enhancement. The ductility of retrofitted columns by composite plate was fairly improved. Also, energy ductility ratio was more effective than displacement ductility ratio for ductility estimation of retrofitted column.