• Title/Summary/Keyword: Carbon dioxide conversion capture materials

Search Result 7, Processing Time 0.022 seconds

Basic Characteristics of ALC using Carbon dioxide Conversion Capture Materials (이산화탄소전환탄산화물 혼합 경량기포 콘크리트의 기초 특성)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum;Kuem-Dan Park;Young-Gon Kim;Eun-Sung Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.121-127
    • /
    • 2024
  • In this study, the applicability of replacing DG(Desulfurized Gypsum) from oil refinery with CCCMs(Carbon dioxide Conversion Capture Materials) as an ALC(Auto-claved LIghtweight Concrete) raw material was examined, and basic properties of ALC was measured. The main chemical components of DG and CCCMs were CaO and SO3, and an increase in LOI(Loss of ignition) due to mineral carbonation reaction was verified. The crystalline phases of CCCMs were CaCO3, CaSO4, Ca(OH)2, and CaSO4·2H2O. When DG, a raw material for ALC production, was replaced with CCCMs, foaming height, pore shape, absolute dry gravity, and compressive strength results measured similar for all binders. In addition, the formation of tobermorite which is main crystalline phase of ALC was shown for all specimens in microstructural analysis.

Characteristic analysis of mortar using desulfurization gypsum and carbon dioxide conversion capture materials as a cement admixture (탈황석고와 탄산화물을 혼합재로 사용한 모르타르의 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Keum-Dan Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.86-91
    • /
    • 2024
  • In this study, the characteristics of mortar using carbondioxide conversion capture materials (CCMs), fabricated by reacting CO2 with desulfurization gypsum (DG) by-produced from a oil refinery, as a cement mixture. Based on the chemical component and particle size analysis results, it estimated that desulfurized gypsum reacted with carbon dioxide to produce carbonate crystals such as CaCO3. Using CCMs as a cement mixture, physical property and durability analysis were conducted by measuring such as workability, compressive strength, compressive strength ratio after freezing-thawing and accelerated carbonation depth. The experimental results showed that as the content of the admixture increased, workability and compressive strength characteristics decreased. Compressive strength after freezing-thawing and accelerated carbonation depth also showed similar characteristics to the physical property measurement results. In addition, compared to desulfurized gypsum, using CCMs showed better physical properties and durability. This was assumed to be due to differences in the crystal phases of the mixed materials such as free-CaO and CaCO3.

Manufacturing of Calcium Silicate Cement Using Construction Waste (건설폐기물을 활용한 이산화탄소 반응경화 시멘트 제조에 관한 연구)

  • Lee, Hyang-Sun;Son, Bae-Geun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.47-48
    • /
    • 2023
  • In the domestic industrial sector, greenhouse gases emitted from the cement industry account for about 10%, with most of them generated during the cement clinker calcination process. During the calcination process, 57% of carbon dioxide is emitted from the decarbonation reaction of limestone, 30% from fuel consumption, and 13% from electricity usage. In response to these issues, the cement industry is making efforts to reduce carbon dioxide emissions by developing technologies for raw material substitution and conversion, improving process efficiency by utilizing low-carbon alternative heat sources, developing CO2 capture and utilization technologies, and recycling waste materials. In addition, due to the limitations in purchasing and storing industrial byproducts generated from industrial facilities, many studies are underway regarding the recycling of construction waste. Therefore, this study analyzes the manufacture of calcium silicate cement (CSC), which can store carbon dioxide as carbonate minerals in industrial facilities, and aims to contribute to the development of environmentally friendly regenerated cement using construction waste.

  • PDF

Characteristics of Direct Aqueous Carbonation Reaction Using Incinerated Ash and Industrial By-Products (소각재 및 산업부산물을 이용한 직접 수성탄산화 반응 특성)

  • Dong Kyoo Park;Seungman Han;Changsik Choi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.113-122
    • /
    • 2024
  • In order to better understand carbon dioxide recycling, the carbon dioxide capture characteristics of six different alkaline industrial by-products, including incineration ash, desulfurized gypsum, low-grade quicklime, and steelmaking slag were investigated using a laboratory-scale direct aqueous carbonation reactor. In addition to the dissolution characteristics of each sample, the main reaction structure was confirmed through thermogravimetric analysis before and after the reaction, and the reactive CaO content was also defined through thermogravimetric analysis. The carbon dioxide capture capacity and efficiency of quicklime were determined to be 473 g/kg and 86.9%, respectively, and desulfurized gypsum and incineration ash were also evaluated to be relatively high at 51.1 to 131.7 g/kg and 51.2 to 87.7%, respectively. On the other hand, the capture efficiency of steelmaking slag was found to be less than 10% due to the influence of the production and post-cooling conditions. Therefore, in order to apply the carbonation process to steelmaking slag, it is necessary to optimize the slag production conditions. Through this study, it was confirmed that the carbon dioxide capture characteristics of incineration ash, quicklime, and desulfurized gypsum are at levels suitable for carbonation processes. Furthermore, this study was able to secure basic data for resource development technology that utilize carbon dioxide conversion to produce calcium carbonate for construction materials.

Analysis of mechanical properties of secondary concrete products using CO2 captured material (이산화탄소 고정 탄산화물을 적용한 콘크리트 2차 제품의 기초 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Kuem-Dan Park;Hyuk-Joon Kwon;Jeong-Hwan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • In this study, the applicability of CCMs (Carbondioxide conversion capture materials) manufactured by reacting carbon dioxide gas with DG (Desulfurization gypsum) as a cement substitute for secondary concrete products were evaluated and the basic physical properties of CCMs-mixed mortar and concrete specimens were measured to derive the optimal mixing ratio. The main chemical oxides of CCMs were CaO and SO3, and the main crystalline phases were CaSO4·2H2O, Ca(OH)2, CaCO3, and CaSO4. In addition, by the results of particle size analysis and heavy metal measurement, the applicability of CCMs as a cement substitute for secondary concrete products was confirmed. As a result of measuring the strength behavior using mortar and concrete specimens with CCMs, the compressive and flexural strength decreased as the mix ratio of CCMs increased, but requirements by the standards for interlocking blocks and retaining wall blocks, which are target products in this study, were satisfied up to the optimal mixing ratio of 10 wt.% substitution. Therefore, its applicability as a cement substitute for secondary concrete products was confirmed.

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution (해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구)

  • Choi, Eunji;Kang, Dongwoo;Yoo, Yunsung;Park, Jinwon;Huh, Il-sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.539-546
    • /
    • 2019
  • Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.