• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,976, Processing Time 0.033 seconds

Long-term Impact of Single Rice Cropping System on SOC Dynamics (동일비료장기연용 논에서 토양유기탄소의 변동)

  • Jung, Won-Kyo;Kim, Sun-Kwan;Yeon, Byung-Yul;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.292-297
    • /
    • 2007
  • Global warming and climate changes have been major issues for decades andvarious researches have reported their impact on our environment. According to recent researches, increased carbon dioxide ($CO_2$) concentration in the atmosphere is considered as a dominant contributor to global climate changes and thus numerous researches were conducted to control $CO_2$ concentration in the atmosphere. Soil management practices, such as reducing tillage intensity, returning plant residues, and enhancing cropping system have recommended for restoring organic carbon into the soils effectively. However, few studies on soil carbon sequestration have reported for Korean paddy soils. Therefore, evaluation of soil organic carbon (SOC) dynamics in the long-term single rice cropping system is essential in order to find out potential capacity of paddy field as a carbon sink source. The objective of this research was to evaluate SOC dynamics on the long-term single rice cropping system. Research was conducted in the research farm at National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon. Long-term phosphorus and potassium fertilization and lime application didn't significantly affect on SOC compared to controls. We found that SOC contents were increased continually at the long-term composting plots with enhanced rate of carbon storage. In conclusion, continuous incorporation of plant residues (i.e., composting) is recommended to effectively sequester soil carbon for Korean paddy soils. This result implies that continuous composting in a paddy field may contributenot only for increasing SOC in the soils but also for mitigating global warming through reducing carbon dioxide emission into atmosphere. Therefore, we recommend that a strategy or policy measures to encourage farmers to return plant residues continuously for mitigation of global warming as well as soil fertility is being developed.

Analysis of statistical models on temperature at the Suwon city in Korea (수원시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1409-1416
    • /
    • 2015
  • The change of temperature influences on the various aspect, especially human health, plant and animal's growth, economics, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly temperature data at the Suwon monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). Among five meteorological variables, radiation, amount of cloud, and wind speed are more influence on the temperature. The radiation influences during spring, summer and fall, whereas wind speed influences for the winter time. Also, among four greenhouse gas variables and five pollution variables, chlorofluorocarbon, methane, and ozone are more influence on the temperature. The monthly ARE model explained about 43-69% for describing the temperature.

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

Analysis of Natural Ventilation Effect of Seoul Metropolitan Subway by Monitoring Indoor $CO_2$ Concentrations (수도권 전동차 객실 $CO_2$농도관측을 통한 자연환기효과 해석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young;Kim, Se-Young;Jung, Mi-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.965-968
    • /
    • 2007
  • Two major parameters, i.e. carbon dioxide ($CO_2$) and particulate matters smaller than $10{\mu}m\;(PM_{10})$, were selected as the index pollutants in managing indoor air quality. The former pollutant, $CO_2$, is the index that shows the ventilation status and is exhaled by passengers when they breathe in train or subway. It is generally known that high $CO_2$ concentration in the vehicle may be decreased by insufficient air-tightening vehicle bodies and the air is ventilated when vehicles stop at the station and doors open. However, there is no established proof or quantitatively identified data on how much the $CO_2$ concentration is reduced when ventilation is done while doors are opened. In this study, $CO_2$ concentrations were measured in 6 lines of Korail and one line of Seoul Metro subway linesand a theoretical approach was takento predict the changing trend of $CO_2$ concentrations during the operation of vehicle by using $CO_2$ dilution factor through natural ventilation. As a result, the change could be quantified and it was found that app. 35% of indoor $CO_2$ was removed through natural ventilation.

  • PDF

Experimental Study on the Argon Impurity Effect in the Pressure Drop of CO2 mixture flow (관내 이산화탄소 압력강하에 아르곤 불순물이 미치는 영향에 관한 실험적 연구)

  • Cho, Meang-Ik;Kang, Seong-Gil;Huh, Cheol;Baek, Jong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8870-8878
    • /
    • 2015
  • During the carbon-dioxide capture and storage(CCS) process, $CO_2$ is captured from large point source, and then injected and stored in stable geological structure for thousands and more years. Inside the captured $CO_2$ flow, various impurities, such as $N_2$, $O_2$, argon, etc, are included inevitably. These impurities affect on the CCS process on various aspects. In this study, we designed and built experimental facility to evaluate the various impurity effect on the $CO_2$ pipeline flow, and analyzed the effect of argon ratio and pressure variation on the pressure drop of $CO_2$ flow. By comparing experimental data with 4 kinds of pressure drop model, we figured out and recommended the Cicchitti's model since it showed most accurate result among compared models in this study.

Effect of pH Adjustment by CO2 on Coagulation and Aluminum Elution in Water Treatment (CO2 주입에 의한 pH 조정이 정수장 응집효율 및 알루미늄 용출에 미치는 영향)

  • Lee, Gil-Seong;Kim, Min-Chai;Kwon, Jae-Kook;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, a pH control method by carbon dioxide ($CO_2$) was applied to coagulation process in water treatment plant (WTP) to investigate the coagulation efficiency and residual dissolved aluminum when high pH raw water is flowing into the plant during algal blooming. Existing coagulant dose (1 mg/L in raw water) resulted in the pH reduction of 0.0384 by LAS, 0.0254 by PAC, 0.0201 by A-PAC, and 0.0135 by PACS2, respectively. And then the concentration of dissolved aluminum was 0.02 mg/L at pH 7.44, 0.07 mg/L at pH 7.96, 0.12 mg/L at pH 8.16, 0.39 mg/L at pH 8.38 showing the concentration increase with pH in the coagulation process. It was noteworthy that rapid increase was observed at pH above 8.0 next the rapid mixing. Therefore it is necessarily required to control pH below 7.8 in the coagulation process in order to meet drinking water quality standard of aluminum for high pH raw water into WTP, $CO_2$ injection could control pH successfully at about 7.3 even for the raw water of high pH above 8.0. In addition it was found that the pH control by $CO_2$ injection was significantly effective for coagulation in terms of turbidity removal, coagulant dosage, and residual dissolved aluminum concentration.

Comparison of the CO2 Emissions of Buildings using Input-Output LCA Model and Hybrid LCA Model (산업연관분석법 기반 LCA 모델과 Hybrid LCA 모델의 건축물 이산화탄소 배출량 평가결과 비교)

  • Hong, Taehoon;Ji, Changyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.119-127
    • /
    • 2014
  • This study aims to determine whether or not the input output life cycle assessment (I-O LCA) model can be used to assess the carbon dioxide (CO2) emission of buildings in initial planning phase. To ensure this end, this study proposed I-O LCA model which is the simplified LCA model and Hybrid LCA model which is the detailed LCA model, and then assessed and compared the CO2 emission of six case projects (three apartment complexes and three educational facilities) using the two LCA model. The results of the case study showed that the CO2 emissions assessed by the I-O LCA is significantly similar to the CO2 emission assessed by the Hybrid LCA model. The similarity of results from both LCA models was 78.2-86.3% in apartment complexes and 59.9-84.8% in educational facilities. However, the CO2 emissions from I-O LCA model were smaller than the CO2 emissions from Hybrid LCA model in case study. Nevertheless, the case study showed that the I-O LCA model was capable of assessing the CO2 emission of buildings quite appropriately although the I-O LCA model is the simplified LCA model which considers only the construction cost. The I-O LCA model is expected to be a useful tool for assessing the CO2 emission of buildings in initial planning phase.

Effects of $CO_2$ and $O_2$ Addition on Methane Dry Reforming Using Arc-Jet Plasma Reactor (아크제트 플라즈마를 이용한 메탄건식개질 반응에서 $CO_2$$O_2$ 첨가의 영향)

  • Hwang, N.K.;Cha, M.S.;Song, Y.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.47-53
    • /
    • 2008
  • The reaction mechanism of methane dry reforming has been investigated using an arc-jet reactor. The effects of input power, $CO_2/CH_4$ and added $O_2$ were investigated by product analysis, including CO, $H_2$, $C_{2}H_{Y}$ and $C_{3}H_{Y}$ as well as $CH_4$ and $CO_2$. In the process, input electrical power activated the reactions between $CH_4$ and $CO_2$ significantly. The increased feed ratio of the $CO_2$ to $CH_4$ in the dry reforming does not affect to the $CH_4$ conversion. but we could observe increase in CO selectivity together with decreasing $H_2$ generation. Added oxygen can also increase not only CO selectivity but also $CH_4$ conversion. However, hydrogen selectivity was decreased significantly due to a increased $H_{2}O$ formation.

  • PDF

Research on manufacturing secondary construction products using in-situ carbonation technology (In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구)

  • Hye-Jin Yu;Sung-Kwan Seo;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.

광합성 미세조류인 Chlorococcum littorale을 이용한 이산화탄소의 생물학적 고정화

  • Kim, Tae-Ho;Sung, Ki-Dong;Lee, Jin-Suck;Lee, Joon-Yeop;Ohh, Sang-Jip;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.235-239
    • /
    • 1997
  • Chlorococcum littorale has been grown in high $CO_2$ concentrations to utilize $CO_2$ gas in the polluted air. The effect of incident light intensity on the specific growth rate is expressed by a photoinhibition model, showing half- saturation constant, $K_0\;as\;8\;(W/m^2)$ and inhibition constant, Ki as 35 $(W/m^2)$. The maximum specific growth rate was also estimated as 0.095 (1/day) under this condition. This strain maintained the optimum growth rate in 20% of $CO_2$ gas but 50% of input $CO_2$ gas is the maximum concentration considering the economical efficiency. The maximum Specific $CO_2$ consumption rate, $qCO_2$ was measured as 17.48 (mg $CO_2/g$ dry wt./day) in batch cultivation, 11.2 (mg $CO_2/g$ dry wt./day) in fed-batch cultivation and 10.87 (mg $CO_2/g$ dry wt./day) at 0.065 (1/day) of dilution rate in continuous cultivation. The chemical composition of the biomass obtained from this process showed 32.5% of protein, 27.5% of lipid, 16.5% of carbohydrate and ash 11.7%.

  • PDF