• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,976, Processing Time 0.034 seconds

Effect of Residence time on Mixed Benzene and Ethylene Degradation in Biofilters (Biofilter에서 체류시간이 혼합 벤젠과 에틸렌 분해에 미치는 영향)

  • 김종오
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • A biofilter study was performed in order to remove mixed benzene and ethylene emitted from soil and groundwater remediation. In particular, more than 96% of ethylene was removed at residence times of 10~15 min, and the possibility of use of the biofilter was obtained. The benzene removal efficiency was achieved as much as 100% at residence times of 2~15 min. With a residence time of 15 min, the maximum elimination capacity of benzene and ethylene was 4.3 g/$\textrm{m}^3$hr and 1.4 g/$\textrm{m}^3$hr, respectively. The maximum elimination capacity of benzene was 3 times higher than that of ethylene. Carbon dioxide concentration decreased as residence times were lowered due to low ethylene degradation rate. The maximum carbon dioxide production rate of 3,169 [mg-$CO_2$/(g-${C_2}{H_4}$${C_6}{H_6$)] was investigated when benzene and ethylene were completely removed. It was found that dominant bacteria in the benzene-degrading microorganisms were identified as Bacillus mycoides and Pseudomonas fluorescens. Dominant bacteria in the ethylene-degrading microorganisms were identified as Pseudomonas putida and Pseudomonas fluorescens.

A Study on Characteristics of Carbon Dioxide Emissions from Passenger Cars (승용차의 이산화탄소(CO2) 배출특성에 관한 연구)

  • Lyu Y.S.;Ryu J.H.;Jeon M.S.;Kim D.W.;Jung S.W.;Kim S.M.;Eom M.D.;Kim J.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.451-458
    • /
    • 2006
  • Automotive exhaust is suspected to be one of the major reasons of the rapid increase in greenhouse effect gases in ambient air. As the concerns regarding global worming were increased, the pressure on mobile source greenhouse gas (GHG) emission were also increased. Carbon Dioxides contribute over 90% of total GHG emission and the mobile source occupies about 20% of this $CO_2$ emission. In this study, in order to investigate $CO_2$ emission characteristics from gasoline and LPG passenger cars (PC), which is the most dominant vehicle type in Korea, 53 vehicles were tested on the chassis dynamometer. $CO_2$ emissions and fuel consumption efficiency were measured. The emission characteristics by fuel type, model year, mileage, vehicle speed and transmission type were also discussed. Test modes used in this study were NIER 10 modes and CVS-75 mode, which have been used for developing emission factors and testing new vehicles respectively. The results of this study showed that the main factors which have significant influences on the $CO_2$ emissions are fuel type, transmission type, displacement of vehicle and mileage. The correlation between $CO_2$ emission and FE was also determined by comparing $CO_2$ emission and fuel consumption efficiency. The overall results of this study will greatly contribute to domestic greenhouse gas emissions calculation and designing national strategies for climate change.

Isolation and Identification of Macamides from the Lipidic Extract of Maca [Lepidium meyenii] using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 maca [Lepidium meyenii]의 지질 추출물로부터 macamides 분리 및 동정)

  • Lee, Seung-Ho;Kang, Jung-Il;Lee, Sang-Yun;Ha, Hyo-Cheol;Song, Young-Keun;Byun, Sang-Yo
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.153-157
    • /
    • 2008
  • Maca (Lepidium meyenii) has been used as a food and medicine in Peru for thousands of years. More recently a wide array of commercial maca products have gained popularity as dietary supplements with claims of anabolic and aphrodisiac effects. Even though the biologically active principles of maca are not fully known, the lipidic extract of maca tubers containing macamides showed promising physiological activities. In this study, the lipidic extract were collected from maca tubers by using supercritical carbon dioxide ($SCO_2$). Substance estimated as macamide in the extract was isolated and purified by preparative HPLC with recycling system. Two of the purified substance was identified as N-benzyl-5-oxo-6E,8E-octadecadienamide and N-benzylhexadecan amide by LC/MS, $^1H$-NMR and $^{13}C$-NMR analyses.

Technology Trend Analysis of CO2 Capture and Storage by Patent Information (특허정보를 활용한 CCS(CO2 Capture and Storage) 기술동향 분석)

  • Lee, Su-Jin;Lee, Yun-Seock;Lee, Jeong-Gu;Hong, Soon-Jik;Lee, Joong-Beom
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.289-297
    • /
    • 2015
  • As recognized by all scientific and industrial groups, carbon dioxide($CO_2$) capture and storage(CCS) could play an important role in reducing greenhouse gas emissions. Especially carbon capture technology by dry sorbent is considered as a most energy-efficient method among the existing CCS technologies. Patent analysis has been considered to be a necessary step for identifying technological trend and planning technology strategies. This paper is aimed at identifying evolving technology trend and key indicators of dry sorbent from the objective information of patents. And technology map of key patents is also presented. In this study the patents applied in korea, japan, china, canada, US, EU from 1993 to 2013 are analyzed. The result of patent analysis could be used for R&D and policy making of domestic CCS industry.

An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses

  • Danish, Danish;Ozcan, Burcu;Ulucak, Recep
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2056-2065
    • /
    • 2021
  • The transition toward clean energy is an issue of great importance with growing debate in climate change mitigation. The complex nature of nuclear energy-CO2 emissions nexus makes it difficult to predict whether or not nuclear acts as a clean energy source. Hence, we examined the relationship between nuclear energy consumption and CO2 emissions in the context of the IPAT and Environmental Kuznets Curve (EKC) framework. Dynamic Auto-regressive Distributive Lag (DARDL), a newly modified econometric tool, is employed for estimation of long- and short-run dynamics by using yearly data spanning from 1971 to 2018. The empirical findings of the study revealed an instantaneous increase in nuclear energy reduces environmental pollution, which highlights that more nuclear energy power in the Indian energy system would be beneficial for climate change mitigation. The results further demonstrate that the overarching effect of population density in the IPAT equation stimulates carbon emissions. Finally, nuclear energy and population density contribute to form the EKC curve. To achieving a cleaner environment, results point out governmental policies toward the transition of nuclear energy that favours environmental sustainability.

The Observations of Water, Carbon Dioxide, Hydrgen, Nitrogen, Oxygen, Carbon Monoxide and Methane as Impurities in Natural Garnets (석류석의 불순물인 물, 이산화탄소, 수소, 질소, 산소, 일산화탄소 및 메탄의 고찰)

  • R. Everett Langford;A. A. Giardini;Charles E. Melton
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.353-356
    • /
    • 1973
  • A unique method of destructive analysis has been developed for the study of gaseous impurities in minerals. Samples are crushed in a high vacuum sample system of a research mass spectrometer. This is done by means of a suitably designed crusher which is incorporated in the inlet system of the instrument. Crusher elements are constructed of tungsten carbide. The mass spectrometer used for this preliminary study has a detection sensitivity of about $10^{-10}cc$at STP. In a study of rhodolite garnets obtained from near Lavonia, Georgia, U.S.A., the gases$H_2$, $O_2$, $H_{2}O$, $CO_2$, CO, and $CH_4$have been identified and their composition determined.

  • PDF

Carbon Dioxide Reforming of Methane Over Mesoporous $Ni/SiO_2$ Catalyst

  • Kim, Dae Han;Sim, Jong Ki;Seo, Hyun Ook;Jeong, Myung-Geun;Kim, Young Dok;Lim, Dong Chan;Kim, Sang Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.166-166
    • /
    • 2013
  • Mesoporous $SiO_2$-supported Ni catalysts (Ni/$SiO_2$ and Ni/$TiO_2$/$SiO_2$) were fabricated by atomic layer deposition (ALD), and their catalytic activity and stability were investigated in carbon dioxide reforming of methane (CRM) reaction at $800^{\circ}C$ The Ni/$SiO_2$ catalysts showed high stability as a result of confinement of Ni particles with a mean size of ~10 nm within the pores of $SiO_2$ support. Besides, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the Ni nanoparticles were partially buried inside the $SiO_2$ support. The strong interaction between Ni and the $SiO_2$ support could also be advantageous for long-term stability of the catalyst. In case of the Ni/$TiO_2$/$SiO_2$ catalyst, it was found that the catalytic activity of 10 nm-sized Ni nanoparticles was not much influenced by $TiO_2$ addition.

  • PDF

The influence on cultivation characteristics of winter mushroom by carbon dioxide concentration (탄산가스 농도 변화가 팽이 버섯 재배에 미치는 영향)

  • Yun, Hyung-Sik;Leem, Hoon-Tae;Kong, Won-Sik;Cho, Jae-Han;Sung, Gi-Ho;Park, Ki-Moon;Jhune, Chang-Sung
    • Journal of Mushroom
    • /
    • v.8 no.3
    • /
    • pp.131-136
    • /
    • 2010
  • This study was performed to determine the optimal concentration of carbon dioxide, which effects mushroom growth and yield. It was shown that the periods for fruiting initiation, growth and harvest of Flammulina velutipes were increased when the $CO_2$ concentration was raised. In general, those characteristics were less affected in brown strains than in white ones. Especially brown strain ASI4103 was susceptible to changes in $CO_2$ concentration. Yields per bottle and individual mushroom weight also decreased in most strains when $CO_2$ levels increased. We were unable to designate any tendency in the number of fruiting bodies due to the large variation within each respective strain. Finally, water contents in the fruiting bodies were found to decline under high $CO_2$ concentrations.

  • PDF

Extraction of ${\beta}$-carotene from Ascidian Tunic [Halocynthia roretzi] using Supercritical Carbon Dioxide and Co-solvent (초임계 이산화탄소를 이용만 우렁쉥이 껍질로부터 ${\beta}$-carotene 추출)

  • Kang, In-Sook;Youn, Hyun-Seok;Park, Ji-Yeon;Chun, Byung-Soo
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.194-198
    • /
    • 2006
  • Dried raw Ascidians(Halocynthia roretzi) shells harvested from fish farms in southern coast area in Korea were used to extract ${\beta}$-carotene using supercritical carbon dioxide($SCO_2$) and with ethanol as a co-solvent at the range of temperatures and pressures, from 25 to $65^{\circ}C$ and 100 to 350 bar respectively. The size of the dried Ascidians shells was around $850{\mu}m$. The system used this study was a semi-batch flow type high pressure unit. The efficiency of ${\beta}$-carotene extraction using $SCO_2$ with and without co-solvent, ethanol, influenced to pressure and temperature changes. The highest solubility of ${\beta}$-carotene in $SCO_2$ was 1.35 mg/g for ${\beta}$-carotene at $35^{\circ}C$ and 350 bar. With addition of 2(v/v%) ethanol the recovery of ${\beta}$-carotene was 93%. As a result of using n-hexane and methanol for rinse, at $35^{\circ}C$ and 350 bar the amount of ${\beta}$-carotene by methanol rinse was 5 times higher than that of n-hexane rinse.

Effects of Inorganic-organic Additives on CO2 Adsorption of Activated Carbon (활성탄의 이산화탄소 흡착에 미치는 유무기계 첨가제의 영향)

  • Jo, Dong-Hyun;Cho, Ki-Sook;Park, Cheong-Gi;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.885-889
    • /
    • 2012
  • In this study, amine and metal oxide additives were investigated to improve $CO_2$ adsorption capacity of activated carbons (ACs). The characteristics of surface modified ACs were studied by X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption, X-ray diffraction (XRD), and BET. Amine surface treatment decreased specific surface area and pore volume of ACs, but increased alkalinity by the incorporated nitrogen functional groups. Adsorption capacities of amine functionalized ACs was larger than original ACs, because basic group which can react with $CO_2$ was grafted on the ACs surface. Presence of copper oxides on ACs also enhances the carbon dioxide adsorption. The copper oxides could increase the adsorption rate of carbon dioxides due to the acid-base interaction (or electron acceptor-donor interaction). It was found that copper oxide loading was a promising method to improve the $CO_2$ adsorption capacity of ACs.