• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,972, Processing Time 0.027 seconds

Analysis of Energy Efficiency Design Index and Onboard Power Capacity for New Building Ships (신조선의 에너지효율설계지수와 선상 동력용량에 대한 분석)

  • Lee, D.C.;Millar Jr, Melchor M.;Nam, J.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.843-851
    • /
    • 2009
  • Much work has already been done to control and regulate the worldwide problems caused by climate change, particularly the issues on greenhouse gas (GHG) emissions. Carbon dioxide ($CO_2$), having the highest form of concentration among GHGs composed around 1.0 billion tons of emission, and comprises about 98% of the total emissions from the shipping industry. Korean trade mainly rely on the sea transportation. Korean ship tonnages that was brought about by shipbuilders all over the country, continues to grow annually due to the prevailing demands on goods or material supplies and depicting only a small part of the global maritime activity. Nowadays, new build ships coming from the Korean Shipbuilders are being optimized by hull, structure and appendages design, The operational capability of the propulsion and auxiliary machineries in its maximum capacity to achieve the highest possible efficiencies for energy and onboard power use to mitigate $CO_2$ emissions are continually being done through the help of research and development. In this paper, the energy efficiency design index and anboard power capacity of Korean new build ships have been analyzed with response to data collected by ship types, and its respective fuel consumption in relation to $CO_2$ emission results. In response to climate change convention outcome proposals, the best way for the new build ships to become energy efficient is by lowering its operational speed thru adopting the state of the art diesel propulsion engines, patronizing the best sailing practice to lower the transportation cost on the different sea trade routes also helps in $CO_2$ mitigation.

International Environmental Efficiency with CO2 Using Meta Stochastic Frontier Analysis (메타확률 프런티어를 사용한 CO2의 국제환경효율)

  • Li, Ziyao;Kang, Sangmok
    • Environmental and Resource Economics Review
    • /
    • v.30 no.3
    • /
    • pp.471-501
    • /
    • 2021
  • We measure Environmental Efficiency (EE) based on CO2 in four income groups from 1998 to 2018, using the Meta Stochastic Frontier Analysis method by Input Distance Function. Our results showed that economic growth and energy consumption would increase carbon dioxide emissions, and increasing labor and capital input will reduce it. Moreover, we compared Group Environmental Efficiency (GEE), Meta Environmental Efficiency (MEE), and Environmental Gap Ratio (EGR). The results showed that GEEs were be overestimated. Furthermore, the MEE showed a downward trend during this period. The lower-middle-income group had the highest EGR performance. High-income and upper-middle-income groups showed less efficiency in MEE and EGR. To improve environmental efficiency, we must reduce fossil fuels and find more scientific and technological ways to solve existing environmental problems as soon as possible.

Effect of orthodontic bonding with different surface treatments on color stability and translucency of full cubic stabilized zirconia after coffee thermocycling

  • Yasamin Babaee Hemmati;Hamid Neshandar Asli;Alireza Mahmoudi Nahavandi;Nika Safari;Mehran Falahchai
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.139-149
    • /
    • 2023
  • Objective: To assess the color stability and translucency of full cubic stabilized zirconia (FSZ) following orthodontic bonding with different surface treatments and coffee thermocycling (CTC). Methods: This in vitro study was conducted on 120 disc-shaped specimens of FSZ. Thirty specimens were selected as the control group and remained intact. The remaining specimens were randomly divided into three groups based on the type of surface treatment (n = 30): airborne particle abrasion (APA), silica-coating (CoJet), and carbon dioxide (CO2) laser. After metal bracket bonding in the test groups, debonding and polishing were performed. Subsequently, all specimens underwent CTC (10,000 cycles). Color parameters, color difference (ΔE00), and translucency parameter (TP) were measured three times at baseline (t0), after debonding and polishing (t1), and after CTC (t2). Data were statistically analyzed (α = 0.05). Results: Significant difference existed among the groups regarding ΔE00t0t2 (p < 0.001). The APA group showed minimum (ΔE00 = 1.15 ± 0.53) and the control group showed maximum (ΔE00 = 0.19 ± 0.02) color stability, with no significant difference between the laser and CoJet groups (p = 0.511). The four groups were significantly different regarding ΔTPt0t2 (p < 0.001). Maximal increases in TP were noted in the CoJet (1.00 ± 0.18) and APA (1.04 ± 0.38) groups while minimal increase was recorded in the control group (0.1 ± 0.02). Conclusions: Orthodontic treatment makes zirconia restorations susceptible to discoloration and increased translucency. Nonetheless, the recorded ΔE00 and ΔTP did not exceed the acceptability threshold.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Production of Ethylene and Carbon Dioxide in Apples during CA Stroage (사과의 CA저장 중 에틸렌 및 이산화탄소 생성)

  • 정헌식;최종욱
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.153-160
    • /
    • 1999
  • This study was carried out to investigate the production of C$_2$H$_4$ and CO$_2$, and the change of flesh firmness and peel color in 'Fuji' apples during CA storage. ACC oxidase activity was more inhibited by the low O$_2$ concentration, and the low level of internal C$_2$H$_4$ in apples was maintained under the low O$_2$ conditions during 8 months storage. Especially, the level of internal C$_2$H$_4$ in apples was maintained below 1 ppm during storage under 1% O$_2$+1% CO$_2$ at 0$^{\circ}C$, and not much changed for 7 days in air at 20$^{\circ}C$ after storage. The influence of CO$_2$ on the C$_2$H$_4$ production was dependent on the O$_2$ concentration. Increasing of CO$_2$ concentration with 3% O$_2$ decreased the C$_2$H$_4$ Production during storage, but that with 1% O$_2$increased. Internal C$_2$H$_4$ concentration and the rate of CO$_2$ evolution in apples showed the close correlation. Internal CO$_2$ concentration of apples was positively related to the rate of CO$_2$ evolution and maintained the lower level in 1% O$_2$+1% CO$_2$ than the other conditions during storage but nu different in the increment after storage. The relationship between C$_2$H$_4$ and CO$_2$ production was exhibited in CA and the short-term air stored apples, but not in the long-term air stored apples. Loss of flesh firmness and green color in apples was more less in storage condition retarded effectively the production of C$_2$H$_4$ and CO$_2$.

  • PDF

Physicochemical Characteristics of Zeolite Mineral by Alkali Solution Treatment (알칼리 처리에 의한 Zeolite 광물의 물리화학적 특성)

  • Yim, Going
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • The effect of sodium hydroxide treatment on some physicochemical properties of zeolite mordenite mineral was studied with chemical analyses, powder X-ray diffraction, thermal analyses, infrared analysis, measurement of carbon dioxide adsorption and gas chromatography. Mordenite mineral from tuffaceous rocks in Yeongil and Wolsung area was used as a starting material and treated with 0.1-5N NaOH aqueous solution at about $95^{\circ}C$ in the water bath for three hours.At the concentration of sodium hydroxide below 0.5N, all chemical compositions in the tuff were virtually insoluble and the mordenite structure did not change. At the concentration above 1N, the chemical compositions such as silica, alumina, etc., were dissolved. The dissolution ratio of silica was lager than that of alumina, and the ratio of silica to alumina in the tuff decreased sharply in the concentration range of 2 to 3N. Intensity of X-ray diffraction peak of mordenite (202) plane and the adsorbed amount of carbon dioxide also decreased with the increasing concentration of sodium hydroxide above 1N. These decreases corresponded to the degree of mordenite structure collapsed.The separation of gas chromatography of nitrogen, oxygen and carbon monoxide was not affected by the sodium hydroxide treatment, but elution peaks of methane and krypton tended to be broadened and their retention time was shortened. The elution peaks of both methane and krypton tended to be overlapped with those of nitrogen and oxygen.

  • PDF

Physiological Effects of Curcumin Extracted by Supercritical Fluid from Turmeric (Curcuma longa L.) (강황(Curcuma longa L.)으로부터 초임계 유체 추출한 curcumin의 생리활성)

  • Jung, Seung-Hyeon;Chang, Kyu-Seob;Ko, Kyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.317-320
    • /
    • 2004
  • Physiological effects of curcumin, major yellow-colored pigment in tumeric (Curcuma longa L.), extracted by traditional extracting methods, ethanol and hot-water extractions, and supercritical fluid extraction (SFE) using supercritical carbon dioxide as new extracting method. Antioxidative activity of ethanol extract was higher than those of SFE and hot-water extracts. Results of Ames mutagenicity test on SFE, ethanol, and hot-water extracts revealed no mutagen in the extracts. Antimutagenicity rates of SFE, ethanol, and hot-water extracts against direct mutagen, 2-nitrofluorene (2-NF), were 20.1, 9.3, and 15.2%, respectively. Antimutagenicity rate of SFE extract against TA98 derived from indirect mutagen, 2-acetamidofluorene (2-AF), was 12.2%, whereas none was observed in ethanol and hot-water extracts. Nitrite-scavenging ability of SFE extract was higher than those of ethanol and not-water extracts.

An Estimation of Plant Specific Emission Factors for CO2 in Iron and Steel Industry (철강 산업의 산업공정부문 CO2 실측 배출계수 산정에 관한 연구)

  • Eom, Y.S.;Hong, J.H.;Kim, J.S.;Kim, D.G.;Lee, S.B.;Song, H.D.;Lee, S.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.50-63
    • /
    • 2007
  • The development of domestic plant specific emission factors is very important to estimate reliable national emissions management. This study, for the reason, was carried out to obtain advances emission factor for Carbon Dioxide ($CO_2$) by source-specific emission tests from the iron and steel industry sector which is well known as one of the major sources of greenhouse gases ($CO_2$). Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$. There was no good information available on $CO_2$ plant specific emission factors from the iron and steel industry in Korea so far. The major emission sources of $CO_2$ examined from the iron and steel manufacturing precesses were a hot blast stove, coke oven, sintering furnace, electric arc furnace, heating furnace, and so on. In this study, the concentration of $CO_2$ from the hot blast stove process was the highest among all processes. The $CO_2$ emission factors for a ton of Steel and Iron products (using B-C oil) were estimated to be 0.315 $CO_2$ tonne (by Tier 3 method) and 4.89 $CO_2$ tonne. In addition, emission factor of $CO_2$ for heating furnace process was the highest among all process. Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$.

The Effects of the Area of Openings on the Performance of a $CO_2$ Extinguishing System -The CFD Simulations of the Oil Surface Fire in a Machine Room- (개구부 면적이 $CO_2$ 소화설비의 소화성능에 미치는 영향 -기계실 석유 표면화재의 CFD simulations-)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Park, Jong-Tack
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Carbon dioxide($CO_2$) agent, which has more safely extinguished fire than any other gaseous fire extinguishing agents, has been widely used in various protected enclosures and types of fires. According to the concept of performance-based design(PBD). $CO_2$ extinguishing system to be designed is needed to be evaluated for the performance of fire suppression with possible fire scenarios in an enclosure. In this paper, CFD simulations were carried out to study the effects of opening area on the performance of $CO_2$ extinguishing system and the flow characteristics in the machine room of $100m^3$ in which kerosene spill fire happened. This study showed that time of fire suppression increased linearly in proportion to the size of opening area, and fires for each model were completely suppressed prior to the end of discharge of $CO_2$ agent. It was shown that mass flow rate through opening was influenced by the combined effects of heat release rate of fire and discharge of $CO_2$ agent. After $CO_2$ agent was completely discharged, oxygen concentrations in enclosures for each model were lower than the limit concentration of combustion.

Neutralization of Alkaline Wastewater with CO2 in a Continuous Flow Jet Loop Reactor (연속흐름형 Jet loop reactor에서 CO2를 이용한 알칼리폐수의 중화)

  • Kang, Dae-Yeop;Kim, Mi-Ran;Lim, Jun-Heok;Lee, Tae-Yoon;Lee, Jea-Keun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • This paper investigates the feasibility of applying the jet loop reactor for the neutralization of alkaline wastewater using carbon dioxide ($CO_2$). In this study, pH changes and $CO_2$ removal characteristics were examined by changing influent flow rate of alkaline wastewater (initial pH=10.1) and influent $CO_2$ flow rates. Influent flow rates of alkaline wastewater ($Q_{L,in}$) ranged between 0.9 and 6.6 L/min, and inlet gas flow rate ($Q_{G,in}$) of 1 and 6 L/min in a lab-scale continuous flow jet loop reactor. The outlet pH of wastewater was maintained at 7.2 when the ratio ($Q_{L,in}/Q_{G,in}$) of $Q_{L,in}$ and $Q_{G,in}$ was 1.1. However, the $CO_2$ removal efficiency and the outlet pH of wastewater were increased when $Q_{L,in}/Q_{G,in}$ ratio was higher than 1.1. Throughout the experiments, the maximum $CO_2$ removal efficiency and the outlet pH of wastewater were 98.06% and 8.43 at the condition when $Q_{G,in}$ and $Q_{L,in}$ were 2 L/min and 4 L/min, respectively.