• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,972, Processing Time 0.029 seconds

Preparation and Characterization of Ferrite Supported on Porous Ceramic Fiber Composites for Co2 Decomposition (이산화탄소 분해용 페라이트 담지 다공성 세라믹 섬유복합체 제조와 물성)

  • Lee, Bong-Soo;Kim, Myung-Soo;Choi, Seung-Chul;Oh, Jae-Hee;Lee, Jae-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2002
  • The decomposition and/or conversion of carbon dioxide to carbon have been studied using oxygen-deficient ferrites for the reduction of $CO_2$ emission to the atmosphere. In this work, the homogeneous precipitation method using urea decomposition was employed to induce in situ precipitation of Ni ferrite($Ni_{0.4}Fe_{2.6}O_4$) on the porous ceramic fiber support (50 mm diameter${\times}$10 mm thickness). Effects of ferrite loading conditions on the CO2 decomposition efficiency were discussed in this paper. Removal of residual chloride ions and urea by solvent exchange from the porous media after ferrite deposition apparently helps to form spinel ferrite, but does not increase the efficiency of $CO_2$ decomposition. Porous ceramic fiber composites containing 20 wt% (1g) ferrite samples showed 100% efficiency for $CO_2$decomposition during the first three minutes, but the efficiency decreased rapidly after the elapsed time of ten minutes. The characteristic reduction time for the $CO_2$ decomposition efficiency was estimated as about 3∼7 min.

Study of $CO_2$ Absorption Characteristics in Aqueous K_2CO_3$ Solution with Homopiperazine (K_2CO_3$/homopiperazine 수용액의 이산화탄소 흡수 특성 연구)

  • Kim, Young-Eun;Nam, Sung-Chan;Lee, Young-Taek;Yoon, Yeo-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.284-290
    • /
    • 2010
  • In this study, as one of the carbon dioxide ($CO_2$) adsorbents the aqueous potassium carbonate ($K_2CO_3$)/promoter mixtures were investigated. Equilibrium partial pressure ($P_{CO_2}^*$) and pressure change were measured by using VLE (Vapor-liquid equilibrium) equipment in the mixture solution at 60 and $80^{\circ}C$, respectively. Absorption capacity was estimated in the semi-batch absorption apparatus at 40, 60 and $80^{\circ}C$. We proposed to use homopiperazine (homoPZ), cyclic diamine compound as a promoter of $K_2CO_3$ solution, to prevent crystalline formation and increase absorption capacity of aqueous $K_2CO_3$ solution. The absorption capacity of $K_2CO_3$/homoPZ was compared with MEA, $K_2CO_3$ and $K_2CO_3$/piperazine (PZ). Based on the results, we found that the mixture solution containing homoPZ had lower equilibrium partial pressure than that of $K_2CO_3$ solution and the absorption rate was approximately 0.375-times faster at $60^{\circ}C$, 0.343-times faster at $80^{\circ}C$ than that of aqueous $K_2CO_3$ solution without homoPZ. $K_2CO_3$/homoPZ solution showed excellent CO2 loading capacity compared with MEA solution at $60^{\circ}C$.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Supercritical Dyeing Technology (초임계 염색 기술)

  • Kim, Taewan;Park, Geonhwan;Kong, Wonbae;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • As the social demands for environmental pollution increase and regulations on the dyeing process wastewater are strengthened, supercritical dyeing process has been attracting attention as an alternative technology to reduce wastewater and energy consumption. In the supercritical dyeing process where carbon dioxide is used as a solvent instead of water as a solvent, there is no wastewater generated. The unfixed dyes can be reused later which makes the process environment-friendly. Also, after dyeing process, dried textiles can be obtained without additional drying process, which makes the process energy efficient. In this article, we have summarized the development of the supercritical dyeing process along with the research in Korea today and compared the principle of supercritical dyeing process with conventional dyeing process. To further explain the principle, studies of the distribution factor and mass transfer of dyes in supercritical carbon dioxide and fibers, as well as solubility between supercritical $CO_2$ and dyes are discussed. The dynamic behavior of dyes in supercritical dyeing apparatus and summary of the supercritical dyeing facilities developed around the world are also discussed. Finally, we suggest the direction of research and development for optimization of supercritical dyeing process and application to synthetic fibers and natural fibers except for polyester.

Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO2 Power Generation (부분 유입 노즐을 적용한 초임계 이산화탄소 발전용 초고속 터보발전기 개발 연구)

  • Cho, Junhyun;Shin, Hyung-ki;Kang, Young-Seok;Kim, Byunghui;Lee, Gilbong;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2017
  • A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world's first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

An experimental study on preparation of precipitated calcium carbonate using Ca component dissolution characteristics and liquid carbonation by the Industrial byproducts (산업부산물의 Ca 성분 용출 특성 및 액상탄산화 반응을 이용한 침강성 탄산칼슘 제조에 관한 실험적 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Shin, Jae-Ran;Choi, Chang-Sik;Hong, Bum-Ui;Kang, Ho Jong;Park, Byung Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.116-126
    • /
    • 2015
  • The present study utilized a shuttle mechanism of wet chemical absorption using MEA. In addition, industrial by-products containing a large amount of inorganic alkali substances were utilized for wet carbonization process. Chemical pretreatment of industrial by-products extracted calcium ions. ICP result of calcium ion was obtained up to 17,900 ppm(17.9%) by acidic substance. And also, In this work, 94% of recovery rate was obtained using wet MEA absorption process from $CO_2$ flow at the ambient condition. Through the liquid carbonation process, a sludge was fixed with rate of 0.175 mg of $CO_2$ per mg of sludge. It was found from XRD results that the structure of final product was composed of a calcite structure which is general structure of $CaCO_3$.

The Estimation of Greenhouse Gas Reductions from Renewable Energy (Photovoltaic, Wind Power) : A Case Study in Korea (재생에너지(태양광, 풍력) 기술의 온실가스 감축산정: 국내를 대상으로)

  • Jung, Jaehyung;Kim, Kiman
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.729-737
    • /
    • 2020
  • This study estimates the greenhouse gas (GHG) emissions reduction resulting from photovoltaic and wind power technologies using a bottom-up approach for an indirect emission source (scope 2) in South Korea. To estimate GHG reductions from photovoltaic and wind power activities under standard operating conditions, methodologies are derived from the 2006 IPCC guidelines for national GHG inventories and the guidelines for local government greenhouse inventories of Korea published in 2016. Indirect emission factors for electricity are obtained from the 2011 Korea Power Exchange. The total annual GHG reduction from photovoltaic power (23,000 tons CO2eq) and wind power (30,000 tons CO2eq) was estimated to be 53,000 tons CO2eq. The estimation of individual GHGs showed that the largest component is carbon dioxide, accounting for up to 99% of the total GHG. The results of estimation from photovoltaic and wind power were 63.60% and 80.22% of installed capacity, respectively. The annual average GHG reductions from photovoltaic and wind power per year per unit installed capacity (MW) were estimated as 549 tons CO2eq/yr·MW and 647 tons CO2eq/yr·MW, respectively. Finally, the results showed that the level of GHG reduction per year per installed capacity of photovoltaic and wind power is 62% and 42% compared to the CDM project, respectively.

Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성)

  • Yu, Tae-Guen;Kim, Dae-Hui;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Estimation of National Greenhouse Gas Emissions in Agricultural Sector from 1990 to 2013 - Focusing on the Crop Cultivation - (1990년부터 2013년까지 농업 분야 국가 온실가스 배출량 평가 - 경종부문 중심으로 -)

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun-il;Lee, Jong Sik
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.443-450
    • /
    • 2016
  • The major greenhouse gases (GHGs) in agricultural sector are methane ($CH_4$), nitrous oxide ($N_2O$), carbon dioxide ($CO_2$). GHGs emissions are estimated by pertinent source category in a guideline book from Intergovernmental Panel on Climate Change (IPCC) such as methane from rice paddy, nitrous oxide from agricultural soil and crop residue burning. The methods for estimation GHGs emissions in agricultural sector are based on 1996 and 2006 IPCC guideline, 2000 and 2003 Good Practice Guidance. In general, GHG emissions were calculated by multiplying the activity data by emission factor. The total GHGs emission is $10,863Gg\;CO_2-eq$. from crop cultivation in agricultural sector in 2013. The emission is divided by the ratio of greenhouse gases that methane and nitrous oxide are 64% and 34%, respectively. Each gas emission according to the source categories is $7,000Gg\;CO_2-eq$. from rice paddy field, $3,897Gg\;CO_2-eq$. from agricultural soil, and $21Gg\;CO_2-eq$. from field burning, respectively. The GHGs emission in agricultural sector had been gradually decreased from 1990 to 2013 because of the reduction of cultivation. In order to compare with indirect emissions from agricultural soil, each emission was calculated using IPCC default factors (D) and country specific emission factors (CS). Nitrous oxide emission by CS applied in indirect emission, as nitrogen leaching and run off, was lower about 50% than that by D.

Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions (산성용액에서 이산화탄소의 압력이 광물탄산화에 미치는 영향)

  • Ryu, Kyoung Won;Hong, Seok Jin;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.