• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,982, Processing Time 0.026 seconds

A Study on Developing Smart Component through the Analysis on Architectural Scheduling and internal Material (건축공종 및 내부자재별 친환경평가 분석을 통한 Smart Component 개발에 관한 연구)

  • Kim, Jae-Won;Jeong, Byung-Woo;Kim, Sun-Seek;Lee, Sang-Hyo;Park, In-Suk;Kim, Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.619-623
    • /
    • 2006
  • When it comes environmental preservation and economic development throughout all the industries, it is adopted to regulate carbon dioxide emissions in United Nations Framework Convention on Climate Change. And we must be responsible for promoting the eco-friendly and sustainable development because of a registration of the Kyoto protocol. Almost all the domestic buildings have many problems that not only waste the resources and architectural energy, but also are not enough to recycling of the waste. So m this study the environment-friendship is estimated through assuming carbon dioxide emissions. And after indicators are derived through surveying the residential satisfaction, it is carefully thought to develop the Smart Component that increase the length of life and the flexibility and improve the comfortable circumstance in buildings.

  • PDF

Hydrogen Sulfide Removal of Biogas from Sewage Treatment Plant with Micro-bubble Generation System (마이크로버블 장치를 이용한 하수처리장 바이오가스의 황화수소 제거)

  • Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.239-244
    • /
    • 2020
  • Prior to utilization of energy and power generation, the biogas from anaerobic digestion of sewage treatment plant(46,000㎡/d) should be purified particularly hydrogen sulfide among the various kinds of impurities. This study has focused on the methane decreasing rate and the removal of both hydrogen sulfide and carbon dioxide. In the case of partial circulation, 59.7% of methane gas was decreased to 57.4% in spite of oxidation process with micro-bubble. Carbon dioxide was removed from 38% to 32% and 76.1% of hydrogen sulfide was removed where 1,400ppm was introduced to the DIWS system, which indicated that DIWS system can be of use for the hydrogen sulfide removal of biogas from sewage treatment plant.

Development of a Greenhouse Environment Monitoring System using Low-cost Microcontroller and Open-source Software (저비용 개방형 Microcontroller를 사용한 온실 환경 측정 시스템 개발)

  • Cha, Mi-Kyung;Jeon, Youn A;Son, Jung Eek;Chung, Sun-Ok;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.860-870
    • /
    • 2016
  • Continuous monitoring of environmental parameters provides farmers with useful information, which can improve the quality and productivity of crops grown in greenhouses. The objective of this study was to develop a greenhouse environment measurement system using a low-cost microcontroller with open-source software. Greenhouse environment parameters measured were air temperature, relative humidity, and carbon dioxide ($CO_2$) concentration. The ranges of the temperature, relative humidity, and $CO_2$ concentration were -40 to $120^{\circ}C$, 0 to 100%, and 0 to 10,000 ppm, respectively. A $128{\times}64$ graphic LCD display was used for real-time monitoring of the greenhouse environments. An Arduino Uno R3 consisted of a USB interface for communicating with a computer, 6 analog inputs, and 14 digital input/output pins. A temperature/relative humidity sensor was connected to digital pins 2 and 3. A $CO_2$ sensor was connected to digital pins 12 and 13. The LCD was connected to digital pin 1 (TX). The sketches were programmed with the Arduino Software (IDE). A measurement system including the Arduino board, sensors, and accessories was developed (totaling $244). Data for the environmental parameters in a venlo-type greenhouse were obtained using this system without any problems. We expect that the low-cost microcontroller using open-source software can be used for monitoring the environments of plastic greenhouses in Korea.

Preparation of Monosized Titanium Dioxide Powder from TEOT (TEOT로부터 TiO₂단분산 분말 합성에 관한 연구)

  • 안영필;최석홍
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.50-50
    • /
    • 1988
  • The controlled Ti(CO2H5)4 hydrolysis reactions for the synthesis of Spherical Monodispersed Titania powders are described. Increasing the concentration of TEOT and the molar ratio of water to TEOT in alcohol solution decrease the reaction time and the particle size. The reaction time is delalyed by increasing the chain length and the number of carbon branches of alcohol as a solvent. The prepared powders with an average diameter of 0.8μ and the spherical monodispersed transfer to Rutile phase at 550℃.

Some Thoughts on LCCO2 of the Railway Track System (철도 궤도시스템의 LCCO2에 관한 소고)

  • Minnu, Tian;Lee, Woo-Chul;Choi, Sang-Hyun;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.548-551
    • /
    • 2009
  • The report of the intergovernment panel on climate change(IPCC) concluded that the global warning due to Green-house Gas(GHGs) will be accelerated in the 21th century. The railroad construction sector consumes a great deal of natural resources and energy in construction. maintenance, and demolition stage. In order to establish and perform reducing plan of GHGs of railway track system for effective corresponding the Climate Change Agreement, the evaluation method of the lifecycle CO2 emission if needed. In this research, it was investigates that the research trend for the LCCO2 and the method to estimate the lifecycle carbon dioxide emission amount of the railway track system as quantitative.

  • PDF

From the Photosynthesis to Hormone Biosynthesis in Plants

  • Hyong Woo Choi
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.99-105
    • /
    • 2024
  • Land plants produce glucose (C6H12O2) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

Biogas Production and Utilization Technologies from Organic Waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2008
  • Anaerobic digestion (AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

Distribution and Physiological Characteristics of Yeasts in Traditional and Commercial Kochujang (재래식 및 개량식 고추장 효모의 분포 및 생리특성)

  • Jung, Yoon-Chang;Choi, Won-Jin;Oh, Nam-Soon;Han, Min-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.253-259
    • /
    • 1996
  • To investigate the yeast florae in the traditional and commercial Kochujang, computer identification systems, Vitek, API kit and conventional identification methods were used. Yeast florae of each process were compared and their typical physiological characteristics were also tested. Various process intervals yielded 330 colonies, which resulted in 11 species 184 strains classified. They were identified into Candida glabrata C. guilliermondii. C. humicola. C. rugosa, C. zeylanoides, Cryptococcus uniguttulatus, Pichia farinosa, Rhodotorula glutinis, Saccharomyces cerevisiae and Zygosaccharomyces rouxii. The strains of Candida, Pichia, Saccharomyces and Zygosaccharomyces were existing in both processes. In case of commercial process, the maximum distribution of Z. rouxii and S. cerevisiae were 33% at 15 day fermentation and 13% at 21 day, respectively. The distribution of Candida spp. was gradually decreased throughtout the fermentation period from 40% to 10%. In the traditional process, the maximum distribution of Z. rouxii and S. cerevisiae were 53% after 3 months and 26% after 7 months, respectively, S. cerevisiae and Z. rouxii showed distintive growth pattern at the high concentration of glucose and sodium chloride and played important roles in both processes of fermentation. Physiological tests revealed that only two major yeasts. S. cerevisiae and Z. rouxii, showed vigorous carbon dioxide formation under the tested conditions.

  • PDF

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

Genotoxicity (DNA damage) on Blood Cells of Parrot Fish (Oplegnathus fasciatus) Exposed to Acidified Seawater Making of CO2 (이산화탄소로 산성화된 해수에 노출된 돌돔(Oplegnathus fasciatus) 혈구세포에 대한 유전독성(DNA 손상))

  • Choi, Tae Seob;Lee, Ji-Hye;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.483-492
    • /
    • 2014
  • DNA damage such as genotoxicity was identified with comet assay, which blood cell of a marine parrot fish (Oplegnathus fasciatus) was exposed to an acidified seawater, lowered pH gradient making of $CO_2$ gas. The gradient of pH were 8.22, 8.03, 7.81, 7.55 with control as HBSS solution with pH 7.4. DNA tail moment of fish blood cell was $0.548{\pm}0.071$ exposed seawater of pH 8.22 condition, on the other hand, DNA tail moment $1.601{\pm}0.197$ exposed acidified seawater of pH 7.55 lowest condition. The approximate difference with level of DNA damage was 2.9 times between highest and lowest of pH. DNA damage with decreasing pH was significantly increased with DNA tail moment on blood cell of marine fish (ANOVA, p < 0.001). Ocean acidification, especially inducing the leakage of sequestered $CO_2$ in geological structure is a consequence from the burning of fossil fuels, and long term effects on marine habitats and organisms are not fully investigated. The physiological effects on adult fish species are even less known. This result shown that the potential of dissolved $CO_2$ in seawater was revealed to induce the toxic effect on genotoxicity such as DNA breakage.