• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,982, Processing Time 0.03 seconds

EFFECT OF SUPPLEMENTARY INTRANASAL MIDAZOLAM ON ORAL SEDATION OF CHILDREN (미다졸람의 비강 내 추가투여가 소아의 경구 진정요법에 미치는 영향)

  • Jang, Su-Young;Kim, Ji-Yeon;Park, Ki-Tae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Effect of supplementary intranasal midazolam on oral sedation of children The purpose of this study was to compare the cardiopulmonary parameters of two sedation regimens during dental treatment: (1) Oral chloral hydrate(CH) and hydroxyzine(HZ) with nitrous oxide-oxygen($N_2O/O_2$) inhalation(CH-HZ group); (2) Oral chloral hydrate(CH) and hydroxyzine(HZ) with nitrous oxide-oxygen($N_2O/O_2$) inhalation and supplementary intranasal(IN) midazolam administration(MIDA group). Among the patients of OO hospital who received dental treatment under sedation over the past 5 years, 44 patients were selected for each group of CH-HZ and MIDA according to their age, gender and weight. Following parameters that were recorded every 5 minutes were compared: 1) Heart rate(HR) 2) $O_2$ saturation 3) End tidal carbon dioxide concentration($EtCO_2$) 4) Respiratory rate(RR) 33 patients of Group MIDA who have complete data of 15 minutes before and after supplementary IN midazolam administration were selected. And measurements 15 minutes before and after midazolam administration in same patient were evaluated. The results were as follows: 1. Heart rate was significantly higher in MIDA group than in CH-HZ group, but it was within normal range. 2. Comparing HR, $O_2$ saturation, EtCO2, RR between before and after of supplementary IN midazolam administration in the same patient, the differences were not statistically significant.

Effect of Gas Absorbents on Quality Attributes and Respiration Characteristics of Mature-Green Mume (Prunus mume Sieb. et Zucc) Fruits during Storage at Ambient Temperature (가스흡착제 처리가 상온 유통 청매실의 품질 및 호흡특성에 미치는 영향)

  • Cha, Hwan-Soo;Hong, Seok-In;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1036-1042
    • /
    • 2002
  • During storage at $25^{\circ}C$, the effect of gas absorbents, such as carbon dioxide scavenger, ethylene absorber, and their combinations, on respiration characteristics and quality attributes of mature-green Mume fruits packaged in $30\;{\mu}m$ low density polyethylene (LDPE) film was examined. Changes in quality attributes of the fruits were observed in terms of weight loss, titratable acidity, pH, fish firmness, color, water-soluble solid, and chlorophyll contents. In the presence of ethylene absorber $(KMnO_4)$, the physiological injury was remarkably suppressed, and there was no significant injury in Mume fruits at $25^{\circ}C$ for 10 days. Yellowing and softening were also noticeably reduced by the combination of plastic film packaging and inclusion of ethylene absorber. The respiration rate was slower in fruits sealed with ethylene absorber than in those with absorbent-free packaging. Using ethylene absorber, levels of oxygen and carbon dioxide were maintained at 2-3 and 7-8%, respectively, during storage at $25^{\circ}C$ for 10 days. The addition of carbon dioxide scavenger $(Ca(OH)_2)$, negatively affected the quality attributes and respiration characteristics of the fruits. Overall results showed that ethylene removal by gas absorbent in the film packages significantly prolonged the shelf life of the fruits at ambient temperature.

Absorption and Regeneration of Carbon Dioxide in Aqueous AMP + AEPD and AMP + TIPA Solutions (AMP + AEPD와 AMP + TIPA 수용액을 이용한 이산화탄소의 흡수 및 재생)

  • Kim, Mi-Sook;Choi, Won-Joon;Seo, Jong-Beom;Cho, Ki-Chul;Kim, Soo-Gon;Oh, Kwang-Joong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.539-546
    • /
    • 2007
  • Increasing emission of $CO_2$ significantly effects the global warming. Chemical absorption is one of separation methods of $CO_2$ from the industrial flue gases. In this study, the $CO_2$ removal efficiency as well as the $CO_2$ absorption amount of aqueous AMP (2-amino-2-methyl-1-propanol) solutions were measured using the continuous absorption and regeneration apparatus. We investigated the effect of aqueous AMP+AEPD(2-amino-2-ethyl-1, 3-propanediol) and AMP+TIPA (triisopropanolamine) solutions to enhance absorption characteristics of AMP. As a result of this study, the absorption amount and $CO_2$ removal efficiency were increased with adding TIPA into 30 wt.% AMP. The absorption amount and $CO_2$ removal efficiency of aqueous 30 wt.% AMP+5 wt.% TIPA solution were $1.70\;kg-CO_2/kg-absorbent$ and 91.1%, while those of aqueous 30 wt.% AMP solution were $1.58\;kg-CO_2/kg-absorbent$ and 89.3%. In addition, aqueous 30 wt.% AMP+5 wt.% TIPA solution used in the study revealed the high stripping efficiency, which was almost 98%, at the temperature of $110^{\circ}C$. Thus, the temperature of regenerator should be operated at $110^{\circ}C$.

Calculation of Carbon Dioxide Emissions by South Korea's Fishery Industry (한국 수산업분야 어업용 연소연료의 사용실태와 CO2 배출량의 산정)

  • Lee, Dong-Woo;Lee, Jae-Bong;Kim, Yeong-Hye;Jung, Suk-Geun;Lee, Hae-Won;Hong, Byung-Kyu;Son, Myong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.78-82
    • /
    • 2010
  • Vessel numbers and fuel consumption by South Korea's offshore and coastal fisheries have continuously declined since 2000. Using the 2006 Intergovernmental Panel on Climate Change Guidelines, $CO_2$ emissions by South Korea's fishery industry (fishing and aquaculture, excluding deep-sea fishing) were calculated by the default $ CO_2$ emission factor and fuel consumption by fuel type, Emission of $CO_2$ was estimated to be 3.22 million $tCO_2$/year in 2007 for fisheries (excluding deep-sea fishing); when including deep-sea fishing, the estimated value increased to 4.11 million $tCO_2$/year. Fuel consumption per tonne of fishery production was 498 L, and the amount of $CO_2$ emission per tonne of production was 1.62 $tCO_2$. To calculate $CO_2$ emission more exactly, we must develop a system to compile energy balance statistics and introduce life-cycle assessment for the fishery industry.

Correlations of Oil Concentration Prediction during In-line Flow of $CO_2/Oil$ Mixtures (유동중인 $CO_2$냉매와 오일 혼합물의 농도 예측을 위한 상관식)

  • Park, Keun-Seo;Kang, Byung-Ha;Park, Kyoung-Kuhn;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.718-725
    • /
    • 2007
  • In the general vapor-compression refrigeration system, refrigeration lubricant circulates in refrigeration system with refrigerant. Knowledge of the amount of circulating lubricant is very important to exactly calculate capacity of the refrigeration system. An experimental study was conducted to estimate the oil concentration of a flowing $CO_2/Oil$ mixtures. POE and PAG oil are considered as test lubricants in this study. Performance tests were conducted under simulated liquid conditions for $CO_2/POE$ oil mixture in oil concentration of 0 to 10 weight-percent and $CO_2/PAG$ oil mixture in oil concentration of 0 to 6 weight-percent in the temperature ranges of $-5^{\circ}C\;to\;15^{\circ}C$. The results obtained indicate specific gravity of $CO_2/Oil$ mixture is increased as oil concentration is increased and as temperature of mixture is decreased. Oil concentration correlation of $CO_2/POE$ oil mixture and $CO_2/PAG$ oil mixture is suggested, based on the measurement of specific gravity and temperature. This correlation enable to predict the oil concentration without extraction of the mixture and can be applied for $CO_2/POE$ mixtures and $CO_2/PAG$ mixtures.

Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide (온실가스 아산화질소(N2O) 저감기술 및 CDM 사업의 현황과 전망)

  • Chang, Kil Sang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • With the effectuation of Kyoto Protocol on the United Nations Framework Convention on the Climate Change, the emission reduction of greenhouse gases became an urgent issue and has been competitively secured among countries as the form of certificates through clean development mechanism (CDM) or joint implementation (JI). Nitrous oxide ($N_2O$) is one of the major greenhouse gases along with carbon dioxide ($CO_2$) and methane ($CH_4$) having warming potential 310 times that of carbon dioxide and chemically very stable in the atmosphere to give a life time of more than 120 years so that it reaches to the stratosphere to act as an ozone depleting substance. $N_2O$ hardly decomposes and thus, besides to the adoption of thermal decomposition at high temperature, selective catalytic reduction methods are usually used at temperatures over $400^{\circ}C$ in which the presence of NOx acts as a major impeding material in the decomposition process. In this article, the sources of various $N_2O$ generation, catalytic reduction processes and the status and trends of emission trade with CDM projects for greenhouse gas reduction are summarized and discussed on a condensed basis.

Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar (탄소포집 활성 고로슬래그 모르타르의 기초특성에 관한 연구)

  • Jang, Bong Jin;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Ju, Min Kwan;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • PURPOSES : To investigate the fundamental characteristics of blast-furnace slag mortar that was hardened with activating chemicals to capture and sequester carbon dioxide. METHODS : Various mix proportions were considered to find an appropriate stregnth development in regards with various dosages of activating chemicals, calcium hydroxides and sodium silicates, and curing conditions, air-dried, wet and underwater conditions. Flow characteristics was investigated and setting time of the mortar was measured. At different ages of 3, 7 and 28days, strength development was investigated for all the mix variables. At each age, samples were analyzed with XRD. RESULTS : The measured flow values showed the mortar lost its flowability as the activating chemicals amount increased in the scale of mole concentration. The setting time of the mortar was relatively shorter than OPC mortar but the initial curing condition was important, such as temperature. The amount of activating chemicals was found not to be critical in the sense of setting time. The strength increased with the increased amount of chemicals. The XRD analysis results showed that portlandite peaks reduced and clacite increased as the age increased. This may mean the $Ca(OH)_2$ keeps absorbing $CO_2$ in the air during curing period. CONCLUSIONS : The carbon capturing and sequestering activated blast-furnace slag mortar showed successful strength gain to be used for road system materials and its carbon absorbing property was verified though XRD analysis.

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

Effects of CO and $CO_2$ on Hydrogen Permeation through Pd-coated V-Ti-Ni Alloy Membranes (Pd 코팅된 V-Ti-Ni 합금 분리막을 통한 수소투과에서 CO와 $CO_2$의 영향)

  • Jeon, Sung-Il;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2011
  • The influence of co-existing gases on the hydrogen permeation was studied through a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane. The hydrogen permeation characteristics of Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane have been investigated in the pressure range 1-3 bar under pure hydrogen and hydrogen mixture gas with carbon dioxide and carbon monoxide at $450^{\circ}C$. Preliminary hydrogen permeation experiments have been confirmed that hydrogen flux was $5.36mL/min/cm^2$ for a Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane (thick: 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen fluxes were 4.46, 5.20, $3.91mL /min/cm^2$ for$V_{53}Ti_{26}Ni_{21}$ alloy membrane using $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ as the feed gas respectively. Therefore, the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure when $H_2/CO_2$, $H_2/CO$ and $H_2/CO_2/CO$ mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD results after permeation test that the Pd-coated $V_{53}Ti_{26}Ni_{21}$ alloy membrane had good stability and durability for various mixtures feeding condition.

Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment (정량적 위험성평가를 위한 배출 오염물질 분포 예측)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.