• Title/Summary/Keyword: Carbon and nitrogen source

Search Result 778, Processing Time 0.025 seconds

Antimutagenic Effects against N-methyl-N`-nitro-N-nitrosoguandine and 4-nitroquinoline-1-oxide on Cultrue Conditions of Leuconostoc mesenteroides subsp. cremoris DLAB19 isolated from Dongchimi (동치미에서 분리한 Leuconostoc mesenteroides subsp. cremoris DLAB19의 배양 조건에 따른 N-methyl-N`-nitro-N-nitrosoguandine과 4-nitroquinoline-1-oxide에 대한 항돌연변이 효과)

  • Rhee, Chang-Ho;Joo, Gil-Jae;Woo, Cheol-Joo
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2001
  • Leuconostoc mesenteroides subsp. cremoris DLAB19 were investgated under various culture conditions to maximize the production of antimutagenic substance(s) against N-methyl-N\`-nitro-N-nitrosoguandine(MNNG) on Salmonella enterica serovar typhimurium TA100 and 4-nitroquinoline-1-oxide(4-NQO) on S. enterica serovar typhimurium TA98. The MRS medium containing glucose (2%) as a carbon source and yeasty extract (1%) as a nitrogen source resulted in the highest production of the antimutagenic substance(s) against both mutagens in the culture supernatant of Leu. mesenteroides subsp. cremoris DLAB19. Optimal pH of the culture medium, culture temperature and shaking speed for the antimutagenic substance(s) production were pH 7.0, 3$0^{\circ}C$ and 150 rpm, respectively. Under the optimal condition, the antimutagenic effects of Leu. mesenteroides subsp. cremoris DLAB19 culture supernatant were 96.4% against MNNG on S.enterica serovar typhimurium TA100 and 53.8% against 4-NQO on S. enterica serovar typhimurium TA98.

  • PDF

Characterization of Bacillus licheniformis KJ-9 Isolated from Soil (토양으로부터 분리한 Bacillus licheniformis KJ 9의 특성)

  • Seo, Dong-Cheol;Ko, Jeong-Ae;Gal, Sang-Won;Lee, Sang-Won
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.403-410
    • /
    • 2010
  • In order to produce high-quality fermenting composts, a microorganism was isolated from the natural world. The bacterium has not only in high enzyme activities but also had good antimicrobial activities against phytopathogenic microorganisms. Its cultivating characteristics were then investigated. Bacterium KJ-9, which contains high CMCase, protease and chitinase activities and excellent antimicrobial activities against phytopathogenic microorganisms, was separated from leaf mold and identified as Bacillus licheniformis by two methods: Bergey's Manual of Systematic Bacteriology and API 50 CHL Carbohydrate Test Kit (Bio Merieux, France) using an ATB (Automated Identification) computer system (Bio Merieux, France). Optimal medium for cultivation of B. licheniformis was 2% soluble starch as a carbon source, 0.5% yeast extract as a nitrogen source and 0.05% $MgSO_4{\cdot}7H_2O$. Optimal growth conditions of pH, temperature and shake speed were pH 7.0, $50^{\circ}C$ and 180 rpm, respectively. Culture broth of B. licheniformis KJ-9 cultured for 36~60 hr was effective in fungicidal activities against plant pathogens including Botrytis cinerea, Corynespora cassicola, Fusarium oxysporum, and Rhizoctonia solani.

Production of L-Lactic Acid from Soluble Starch by Enterococcus sp. JA-27. (Enterococcus sp. JA-27에 의한 가용성 전분으로부터 L형 젖산의 생산)

  • 김경아;김미경;장경린;전홍기
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • Lactic acid bacteria with amylolytic and acid producing activities can ferment starch directly to lactic acid thereby producing a monomer for the production of biodegradable poly lactic acid (PLA). In this study, the strain producing L-lactic acid from soluble starch was isolated from Nuruk. The isolated strain was identified as Enterococcus sp. through its morphological, cultural, biochemical characteristics as well as the 16S rDNA sequence analysis, and named Enterococcus sp. JA-27. Enterococcus sp. JA-27 produced exclusively L-lactic acid from soluble starch as a carbon source. The optimal conditions for the maximum production of L-lactic acid from Enterococcus sp. JA-27 were 30 C, pH 8, 1.5 % soluble starch as a substrate and 3.5 % tryptone as a nitrogen source, 0.1 % $K_2$$HPO_4$, 0.04 % $MgSO_4$. $7H_2$O, 0.014 % $MnSO_4$$.$4$H_2O$, 0.004% $FeSO_4$$.$$7H_2$O. Batch and fed batch culture were carried out and the former was more effective. L-Lactic acid production in the optimum medium was significantly increased in a 7 L jar fermenter, where the maximum L-lactic acid concentration was 3 g/L. For the purification of lactic acid in fermented broth, two stage ionexchange column chromatographies were employed and finally identified by HPLC.

Influences of Culture Medium Components on the Production Poly (γ-Glutamic Acid) by Bacillus subtilis GS-2 Isolated Chungkookjang (청국장에서 분리한 Bacillus subtilis GS-2에 의한 Poly(γ-Glutamic Acid) 생산의 최적 배양조건)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Kim, Kwan-Pil;Yi, Dong-Heui
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.677-684
    • /
    • 2012
  • A bacterium strain GS-2 isolated from the Korean traditional seasoning food, Chungkookjang and was determined to produce large amounts of ${\gamma}$-PGA with high productivity when provided with simple nutrients (L-glutamic acid 2.0%, glucose 1.0%, $NH_4Cl$ 0.5%, $KH_2PO_4$ 0.05%, $MgSO_4{\cdot}7H_2O$ 0.01%, pH 7.0). In this study, the culture medium for this strain was optimized for the production of ${\gamma}$-PGA. The Bacillus subtilis GS-2 required supplementation with L-glutamic acid and other nutrients for maximal production of ${\gamma}$-PGA. The optimal culture conditions for ${\gamma}$-PGA production were a 48 hr culture time, a temperature of $33^{\circ}C$ and initial pH of 6.5 by rotary shaking (220 rpm). A maximum ${\gamma}$-PGA production of 31.0 $g/{\ell}$ was obtained with L-glutamic acid (30 $g/{\ell}$), sucrose (the main carbon source, 30 $g/{\ell}$), $NH_4Cl$ (the main nitrogen source, 2.5 $g/{\ell}$), $KH_2PO_4$ (1.5 $g/{\ell}$) and $MgSO_4{\cdot}7H_2O$ (0.15 $g/{\ell}$) in the culture medium.

Study of Formation Factor of Biofilm on Aluminum surface and Removal Efficiency of Biofilm by Antimicrobials (알루미늄 표면에 생물막의 형성인자 및 항균제에 의한 생물막 제거효과 분석)

  • Park, SangJun;Oh, YoungHwan;Jo, BoYeon;Lee, JaeShin;Lee, SangWha;Jeong, JaeHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • 108 microorganism types (79 types of fungi and 29 types of bacteria) were isolated from 25 automobiles generating bad odor when the air conditioner was turned on, and 43 types of fungi and 23 types of bacteria were identified. The analysis of condensate generated by the air conditioners in the automobiles indicated pH 6.4~7.1, 12.5~34.2 mg/L carbon source, 0.9~18.6 mg/L nitrogen source, 0.5~27.8 mg/L ion contents, and 0.1~7.7 mg/L mineral contents. The biofilms were formed by the mesophiles under the summer temperature/humidity condition ($26^{\circ}C$, 70% R.H.), and they were regenerated when the environmental factors (nutritional contents and temperature/humidity) were appropriate even after they were artificially removed. Although the antimicrobials removed 99.9% of planktonic cells within 15 minutes, they were not effective in removing biofilm. Up to 1,950 ppmv of ethanol was observed in the automobile treated with the antimicrobials. Although the figure is lower than the acute toxicity level when inhaled by humans, the health safety of the chemical substances used in the antimicrobials needs to be reviewed.

Effective Production of $\beta$-Glucan by the Liquid Cultivation of Agaricus blazei (Agaricus blazei 균사체 배양기술을 통한 효율적인 $\beta$-glucan의 생산)

  • 이승현;임환미;김태영;조남석;박준성;유연우;김무성
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • $\beta$-Glucan has been efficiently produced with higher yield by the optimization of liquid cultivation conditions. The optimal composition of medium for batch culture was 5% (w/v) of glucose as a carbon source, 0.5% (w/v) of yeast and 0.5% (w/v) of malt extract as a nitrogen source, 0.1% (w/v) of $KH_2PO_4$ and 0.05% (w/v) $MgSO_4{\cdot}7H_2O$, which had been the base medium for determination of other conditions. The set-up conditions are pH 5.0, $28^{\circ}C$, 1 vvm for aeration and 300 rpm for agitation. In order to minimize the inhibition effect of glucose on the initial growth of mycelia and to maximize the production of extracellular $\beta$-glucan, we have reduced the initial glucose feed to 4% and added 2nd feed at the point of 70 hr from the initial feed. The 2nd feed was composed of glucose 3%, yeast extract 0.1 % and malt extract 0.1 %. It improved the $\beta$-glucan yield upto 5.2 g/L in comparison with 2.8 g/L resulted from batch cultivation. Moreover, the serial treatment of a cell wall lytic enzyme and bromelain to the mycelia was effective for extraction of the cell wall bound $\beta$-glucan. The yield of $\beta$-glucan extraction by the enzyme treatment was 3.5 g/L, which was almost 4 times higher than that by hot-water extraction.

Isolation and Characterization of Microorganisms with Broad Antifungal Activity against Phytopathogenic Fungi (식물병원균에 광범위 항균활성을 가진 미생물의 분리 및 특성)

  • Kim, Min-Hee;Ko, Hee-Sun;Yook, Young-Min;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • For the production of an antifungal compound, one strain (I-8) was selected from approximately 400 strains isolated from various soil samples. The optimum carbon source, nitrogen source and pH culture conditions for the production of the antifungal compound were investigated. ISP No. 2 medium (yeast extract 0.4%, malt extract 1% and dextrose 0.4%, at pH 8) was determined to be the optimum medium. Strain I-8 showed broad antifungal activity against the plant pathogenic fungi tested, including Sclerotinia sclerotiorum KACC 41065, as well as cellulase and chitinase activities in an agar plate assay. The extraction of antifungal compounds was performed using ethyl ether and ethyl acetate. In a culture broth of strain I-8, the ethyl acetate extract exhibited effective growth inhibition against 14 of the 20 phytopathogenic fungi tested. By mixing the ethyl acetate extract from I-8 with the ethyl ether extract from the fungus 13-16, which shows specific antifungal activity against Colletotrichum orbiculare KACC 40808, the antifungal activity of I-8 against phytopathogenic fungi was confirmed to be slightly increased. Strain I-8 showed strong growth inhibition against 16 phytopathogenic strains in agar plate tests.

Production of Antihypertensive Constituents from Ganoderma lucidum IY005 by Fermentation Using Industrial Wastes (산업폐자원을 이용한 발효에 의한 영지의 항고혈압 성분의 생산)

  • Lee, Kweon-Haeng;Jeong, Hoon;Kim, Young-Il;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 1991
  • Fruit bodies of Ganoderma lucidum have been used for most pharmacological studies, but pharmacological effects are likely variable because the habitats and strains of Ganoderma lucidum are different. Therefore, their fermentation is required to produce constant and reliable pharmacolo­gical constituents from Ganoderma lucidum. During the studies of medium for industrial application. it was found that ginseng root residues, remaining after being extracted with ethanol, were a good carbon source for a fermentation of Genoderma lucidum and a corn steep liquor was also economical for the nitrogen source. Yield of the mycelial cultured in ginseng root residues and corn steep liquor was 2.5 times higher than that in glucose and peptone, known as a conventional medium of Ganoderma lucidum. The polysaccharide content of the extracts from the cultured mycelia was higher than that from fruit bodies, but protein content was vice versa. Extracts of the cultured mycelia were more effective and lasting than extracts of the fruit bodies in decreased hypertention of spontaneously hypertensive rats (SHR).

  • PDF

The Structure Analysis and Biosynthesis of $\beta$-glucan by Alcaligenes faecalis (Alcaligenes faecalis에 의한 $\beta$-glucan의 생합성과 구조 분석)

  • Ryu, Kang;Lee, Ki-Young;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.409-414
    • /
    • 2001
  • Biosynthesis of curdlan( ${\beta}$-1,3 glucan) was shown by fluorscence on cellufluor medium. The highest production of curdlan was produced when glucose was used as a carbon source and ($NH_4$)$_2$$SO_4$ was used as a nitrogen source. ${\beta}$ -form of curdlan was detected in the fingerprint region (890 $cm^{-1}$) by FT-IR spectrum and shown homogeneous ${\beta}$ -1,3 glucan by $^{13}C$ NMR spectrum ($C_1$-103 ppm, $C_2$-73.2 ppm, $C_3$-86.4 ppm, $C_4$-68.7 ppm, $C^{5}$-76.63 ppm, $C_{6}$-61.2 ppm). Transition of structure from triple helix coil form to random coil form was appeared at 0.1 ∼0.25 M NaOH concentration. It was shown that natural curdlan is a triple helix form in neutral but becomes weak in alkaline condition.

  • PDF

Studies on the Petroleum hydrocarbon-utilizing Microorganisms(Part 1) -On the Production of Protein from the Yeast-cell- (석유(탄화수소) 이용미생물에 관한 연구(제 1보) -효모세포에 의한 석유로부터 단백질 생성에 관하여-)

  • Lee, Ke-Ho;Shin, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1970
  • To study the productivity of single cell protein from the petroleum hydrocarbon utilizing yeasts, 242 soil samples, such as oil soaked soil of gas stations and garage, coal, farm soil, and sewage, from 135 places in Korea were collected. From these samples 468 yeast strains which utilize petroleum hydrocarbon as a sole organic carbon source were isolated and identified by observing the growth rates. For the identified strains optimum culture conditions were determined and analysis of cell components were performed. 1. 90.8% of petroleum hydrocarbon utilizing yeast strains were found from oil soaked soil and about 10% from coal, farm soil and sewage etc. 2. The yeast strain of the highest cell productivity was isolated from oil soaked soil and was identified as Candida curvata HY-69-19. 3. The optimum culture conditions for the selected yeast strain were found to be pH 5.0, $28^{\circ}C$ and affluent aerated state. 4. Candida curvata HY-69-19 was found to utilize favorably the heavy gas oil fractionated at above $268.9^{\circ}C$ as carbon source and urea as inorganic nitrogen source. 5. The growth curve of this strain on heavy gas oil medium showed that the yeast has a lag phase up to 18 hours and logarithmic growth phase between 24 to 42 hours. Generation time was found to be between 3.8 and 4.5 hours during the logarithmic growth phase. 6. About 300 mg dried cells per heavy gas oil was harvested under the culture conditions of adjusted pH to 5.0 at time intervals of 6 hours for 54 hours and heavy gas oil urea for shaking culture medium. 7. Chemical composition of the yeast cell was found to be 40.25%, 14.81%, 24.32% and 10.63% for crude protein, crude lipid, carbohydrate and ashes, respectively.

  • PDF