• Title/Summary/Keyword: Carbon activity

Search Result 1,913, Processing Time 0.022 seconds

Photonic Aspects of MB Degradation on Fe-carbon/TiO2 Composites under UV Light Irradiation

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.433-438
    • /
    • 2010
  • Fe-carbon/$TiO_2$ composites were prepared by a sol-gel method using AC, ACF, CNT and $C_{60}$ as carbon precursors and were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The activity of the prepared photocatalysts was investigated by degradation reaction of methylene blue (MB) irradiated with UV lamp. Effects of different carbon sources and irradiation time on photocatalytic activity were also investigated. The results showed that the photocatalytic activity of the Fe-carbon/$TiO_2$ composites was much higher than that of pristine $TiO_2$ and Fe/$TiO_2$ composites. The prominent photocatalytic activity of Fecarbon/$TiO_2$ composites could be attributed to both the effects of photo-adsorption and electron transfer by carbon substrate. In addition, the higher photocatalytic activity of Fe-carbon/$TiO_2$ composites can be compared with that of carbon/$TiO_2$ and Fe /$TiO_2$ composites due to cooperative effects between Fe and carbon.

Crystallization Behaviour of PP and Carbon Nanofibre Blends

  • Chatterjee, A.;Deopura, B.L.
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.102-106
    • /
    • 2003
  • Crystallization behaviour of blends of different MFI isotactic polypropylenes (PP), and blends of PP with carbon nanofibre have been investigated by DSC and polarizing optical microscope. Both higher MFI PP component and the carbon nanofibre in the blend influence the nucleation activity of the melt during non-isothermal crystallization. In presence of carbon nanofibre, the sherulitic growth rate is highly disturbed. The calculation of nucleation activity indicates that carbon nanofibres act as active substrate for heterogeneous nucleation.

Effect of Carbon Tetrachloride Administration on the Serum and Liver Xanthine Oxidase Activity in Ethanol-Pretreated Rats (Ethanol을 전처리한 흰쥐의 간 및 혈청 Xanthine Oxidase 활성에 미치는 사염화탄소의 영향)

  • 윤종국;김병렬;이상일
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.69-77
    • /
    • 1993
  • In the present study, the comparison of liver damage in carbon tetrachloride (CCl$_4$)-treated rats with that those pretreated with ethanol and an effect of liver injury on the serum and liver xanthine oxidase (XOD) activity were evaluated. The increasing rate of liver weight per body wt., the levels of serum alanine aminotransferase, and the decreasing rate of hepatic glucose-6-phosphatase activity and the protein contents in the liver cell were higher in carbon tetrachloride-treated animals pretreated with ethanol than the carbon tetrachloride-treated group. Especially, the histopathological findings also showed more severe liver damage in the ethanol-pretreated rats than the rats treated with carbon tetrachloride only. In such a experimental condition the xanthine oxidase activity of serum and liver both of carbon tetrachloride-treated rats and those pretreated with ethanol were higher than that of each control group. And the increasing rate of xanthine oxidase enzyme activity to the control group was higher in carbon tetrachloride-treated group pretreated with ethanol than those treated with CCl$_4$. In addition, the heptic uricase activity and the serum levels of uric acid were more increased in carbon tetrachloride-treated group pretreated with ethanol than those in the CCl$_4$-treated rats. On the other hand, there were no statistical differences in hepatic catalase and glutathione S-transferase activities between the CCl$_4$-treated rats and those pretreated with ethanol. In conclusion, it is assumed that the more severe liver damage in ethanol pretreated rats would be due to oxygen free radical produced by the xanthine oxidase system.

  • PDF

A Study on the Characteristics of Pollutant Removal in Secondary Effluent from Wastewater Treatment Plant Using Silver Nanoparticles on Activated Carbon (은나노 활성탄에 의한 하수 2차 처리수 중의 오염물질 제거 특성에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.353-360
    • /
    • 2014
  • This study targets the pollutant removal of secondary effluent from final clarifiers in wastewater treatment plant using silver nanoparticles on activated carbon. The removal efficiency and treatment characteristics of pollutant are anlayzed by perfoming experiments using granular activated carbon with silver nanoparticles and ordinary granular activated carbon. The specific surface area of granular activated carbon with silver nanoparticles is smaller than that of ordinary granular activated carbon. However, the removal efficiency of $COD_{Mn}$, T-N and T-P in experiments using activated carbon with silver nanoparticles are higher than that in experiment using ordinary granular activated carbon. That means the case of activated carbon with silver nanoparticles is much better at treatment activity. In addition, activated carbon with silver nanoparticles has antimicrobial activity because there is no microbe on the surface of it after experiments.

Kinetics and Catalytic Activity of Carbon-Nickel Nanocomposites in the Reduction of 4-Nitrophenol

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Carbon-nickel nanocomposites were prepared by the reaction of fullerene ($C_{60}$) and nickel hydroxide in an electric furnace at $700^{\circ}C$ for 2 h. The hybrid carbon-nickel nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The kinetics and catalytic activity of the carbon-nickel nanocomposites in the reduction of 4-nitrophenol were confirmed by UV-vis spectroscopy.

The Effect of Dimethyl-esculetin on the Serum Transaminase Activity of Rabbit Pretreated with Carbon-tetrachloride (Dimethyl-esculetin이 Carbon-tetrachloride 부하가토혈청 Transaminase 활성도에 미치는 영향)

  • Lee, Ton-Il
    • Korean Journal of Pharmacognosy
    • /
    • v.1 no.4
    • /
    • pp.115-118
    • /
    • 1970
  • Antihepatotoxic effect of dimethyl-esculetin, the major constituent of herbal drug Artemisia capillaris $T_{HUNBERG}$ (Compositae) which has long been used as folk medicine for gall stone and hepatitis in Asian country (China and Japan, except Korea) was investigated on the rabbit intoxicated with carbon-tetrachloride. Ten rabbits were divided into two parts, group A and B in five each. The group A was injected with carbon-tetrachloride, 0.1ml per kg at begining of the experiments for control. The group B was injected with carbon-tetrachloride soon after 7 days treatment of dimethyl-esculetin, 30mg per day. The results obtained in this experiment were as follows.: 1) Antihepatotoxic activity of dimethyl esuletin on the rabbits intoxicated with carbon tetrachloride has shown the serum glutamic oxaloacetic transaminase activity and serum glutamic pyruvic transaminase activity decreased respectively. 2) The component of Artemisia capillaris, dimethyl-esculetin, has shown remarkable antihepatotoxic effect.

  • PDF

Carbon/TiO2 Prepared from Anatase to Pitch and their Photocatalytic Performance

  • Chen, Ming-Liang;Ko, Young-Shin;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2007
  • Carbon/$TiO_2$ composites were prepared by $CCl_4$ solvent mixing method with different mixing ratios. Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the Carbon/$TiO_2$ composite series showed a good adsorptivity and photo decomposition activity. The BET surface area for the carbon layer in the sample increases to increasing with pitch contents. The SEM results present to the characterization of porous texture on the Carbon/$TiO_2$ composite and pitch distributions on the surfaces for all the materials used. From XRD data, a weak and broad carbon peak of graphene with pristine anatase peaks were observed in the X-ray diffraction patterns for the Carbon/$TiO_2$. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of Carbon/$TiO_2$ with slope relationship between relative concentration (C/$C_0$) of MB and t could be attributed to the homogeneous coated pitch on the external surface by $CCl_4$ solvent method.

Histochemical studies on effect of low concentrated carbon monoxide on the caudate nucleus in rat (저농도 일산화탄소가 흰쥐 미상핵에 미치는 영향에 관한 조직화학적 연구)

  • Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.425-431
    • /
    • 1989
  • This study was undertaken to investigate the changes of enzyme activities resulted from low concentrated carbon monoxide poisoning on the caudate nucleus in rat. The activities of cytochrome oxidase, succinate dehydrogenase and lactate dehydragenase were observed histochemically, after the experimental animals were poisoned to 100ppm carbon monoxide for 8 hours every day from one day to 16 days. The materials were sliced from coronal section at the level of the optic chiasm and immediately frozen sections of $10{\mu}m$ thickness were cut on the cryostat at $-15^{\circ}C$ and incubated in the medium containing substrate for histochemical detection of cytochrome oxidase, succinate dehydrogenase and lactate dehydrogenase. The sections were mounted in glycerol gelatin and observed under light microscope. It was obtained that cytochrome oxidase activity decreased moderately and succinate dehydrogenase activity showed marked or moderate activity during entire poisoning period and lactate dehydrogenase activity showed marked or moderate activity from one to 8 days but recovered to normal condition at 16th day.

  • PDF

Screening of Medicinal Plants Having Hepatoprotective Activity Effects with Primary Cultured Hepatocytes Intoxicated Using Carbon tetrachloride Cytotoxicity ($CCl_4$로 독성유발시킨 초대배양 간세포를 이용하여 간세포 보호효과를 나타내는 생약류의 검색)

  • Lee, June-Woo;Choi, Joon-Han;Kang, Sang-Mo
    • Korean Journal of Pharmacognosy
    • /
    • v.23 no.4
    • /
    • pp.268-275
    • /
    • 1992
  • We studied to screen medicinal plants having hepatoprotective activity with the primary cultured rat hepatocytes intoxicated with carbon tetrachloride cytotoxicity. The lowest concentration and treatment time of carbon tetrachloride giving the greatest intoxication to the primary cultured hepatocytes were observed in 10mM and 60 minutes, respectively. GTP and GOT activity of culture broth of the primary cultured rat hepatocytes intoxicated by $CCl_4$ cytotoxicity at this condition were increased 135.9% and 178.3% compared with that of the primaries cultured hepatocytes not treated with $CCl_4$, respectively. This increased GPT activity was inhibited by glycyrrizin, which was known to have hepatoprotective activity, and the inhibition activity was dependent on the concentration of glycyrrhizin. Forty species among the extracts obtained from 117 species of medicinal plants were shown to have the hepatoprotective activity. Among these 40 species, Prunus persica, Scutellaria baicalensis, Astragalus membranaceus, Tribulus terrestris, Caragana chamlagu, Acanthopanax sessiliflorum and Achyranthes japonica were indicated a lower GPT activity than that of Glycyrrhiza uralensis containing glycyrrhizin and GPT activity of these were indicated 75.5%, 70.0%, 59.0%, 77.5%, 60.0%, 75.0% and 79.0%, respectively.

  • PDF

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.