• Title/Summary/Keyword: Carbon absorption

Search Result 825, Processing Time 0.03 seconds

A Study on Degradation in the Moisture Environment and Recovery of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재료의 수분에 의한 열화 및 회복에 관한 연구)

  • 서상하;이덕보;문창권
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2004
  • The effect of moisture absorption on the mechanical properties in carbon fiber reinforced composites has been investigated with various moisture environment such as sea water, tap water and distilled water. It also has been studied about the influence of drying of the immersed specimen for a certain period of time on the mechanical properties. As a result, we found that the ratio of moisture absorption mainly depended on the immersion time in the moisture environment and that of the immersed specimen for a certain period of time decreased with the drying time. We also found that tensile strength decreased with the increasing of the ratio of moisture absorption and the tensile strength decreased by moisture absorption recovered up to some extent by drying the specimen.

Absorption and Thermal Properties According to Ionic Impurities of Semiconductive Materials for Underground Power Cable (지중 전력케이블용 반도전재료의 이온성 불순물에 따른 흡습 및 열적특성)

  • Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.133-137
    • /
    • 2004
  • In this paper, we investigated impurities content, absorption properties, and thermal properties showing by changing the content of carbon black which is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens and absorption properties were measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) and Karl Fisher. And high temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis). The dimension of measurement temperature was 0$[^{\circ}]$ to 800$[^{\circ}]$, and rising temperature was 10$[^{\circ}/min]$. Impurities content was highly measured according to increasing the content of carbon black from this experimental result also absorption amount was increased according to these properties. Specially, impurities content values of the A1 and A2 of existing resins were measured more than 4000[ppm]. Heat degradation initiation temperature from the TGA results was decreased according to increasing the content of carbon black. All over, heat stabilities were EEA>EBA>pEVA. That is, heat stabilities of EVA containing the weak VA(vinyl acetate) against heat was measured the lowest.

  • PDF

CO2 Absorption in Ionic Liquids (이온성액체를 활용한 이산화탄소 회수)

  • Jeong, Soon Kwan;Kim, Dae Hoon;Baek, Il Hyun;Lee, Si Hyun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.492-497
    • /
    • 2008
  • The solubility of carbon dioxide in ionic liquids and amine solvents has been investigated in gas-liquid absorption equilibrium reactor. Absorption capacity and kinetics of $CO_2$ with $CO_2$ pressure and absorption time in 9 different ionic liquids and 2 kinds of amine solvents were evaluated. In order to understand the effect of ionic type, we changed the cation or anion of ionic liquids. $CO_2$ absorption capacity and absorption rate of amine solvents were higher than those of ionic liquids. $CO_2$ absorption capacity of [emim][$Tf_2N$], $0.14molCO_2/mol\;IL$ at 1 bar, was the highest among the ionic liquids. $CO_2$ absorption capacity of ionic liquid steeply decreased with increasing temperature. Anion of ionic liquid dominates interaction with $CO_2$ and cation plays secondary role.

Measurement of Black Carbon Concentration in Rural Area (교외지역 블랙카본 농도 측정)

  • Lee, Ki Woong;Han, Seung Cheol;Lee, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • We measured black carbon concentration in rural area to understand the characteristic of atmospheric aerosol by comparing the black carbon concentration and meteorological factors such as PM10 concentration, relative humidity, temperature and wind velocity. A MAAP (Multi Angle Absorption Photometer) which is one of filter based equipments was used to measure black carbon concentration. Black carbon concentration was measured to be high from April to May and low from June to September. Black carbon concentration was proportional to PM10 concentration. Black carbon concentration was correlated to relative humidity. Black carbon concentration was inversely proportional to wind velocity and temperature. Finally, we suggest that the volume fraction of black carbon in the atmosphere can be estimated from the size, number concentration and absorption coefficient measured using the MAAP.

Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy

  • Cha, Ok-Hwan;Jeong, Mun-Seok;Byeon, Clare C.;Jeong, Hyun;Han, Jong-Hun;Choi, Young-Chul;An, Kay-Hyeok;Oh, Kyung-Hui;Kim, Ki-Kang;Lee, Young-Hee
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • We propose an evaluation method of the relative content of single-walled carbon nanotubes (SWCNT) in SWCNT soot synthesized by arc discharge using UV-VIS-NIR absorption spectroscopy. In this method, we consider the absorbance of semiconducting and metallic SWCNTs together to calculate the relative content of SWCNTs with respect to a highly purified reference. Our method provides the more reliable and realistic evaluation of SWCNT content with respect to the whole carbonaceous content than the previously reported method.

Prediction of Absorption Behavior of Carbon Dioxide on Membrane Contactor (분리막 접촉기를 통한 이산화탄소 흡수거동 예측)

  • Cho, In-Gi;Ahn, Hyo-Seong;Hahm, Moon-Ky;Kim, I.H.;Lee, Yong-Taek;Park, You-In;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • To predict the absorption behavior of carbon dioxide on membrane contactor, an aqueous potassium carbonate solution as an absorbent. The reversible reactions of carbon dioxide with chemicals were considered, and the physicochemical properties of reaction rate constants, equilibrium constants, solubilities and diffusion coefficients were used as a function of concentration of carbon dioxide and the temperature. A non-wetted mode was also used as an operating condition of the membrane contactor. In these operation conditions, the effect of the following system parameters were studied : the concentration of potassium carbonate, the velocity of the absorbent and the pressure of the mixture gas. The absorption behavior of carbon dioxide caused by a facilitated transport was observed as the increment of the concentration of the absorbent. The absorption rate of carbon dioxide was increased as the absorbent velocity was increased. Furthermore, it was found that the pressure if the mixture gas and the reuse number of absorbent affect severely the absorption rate of carbon dioxide. The absorption behavior was successfully predicted by the computer simulation using the system parameters which are important for design and operation of the membrane contactor.

  • PDF

The Quantitative Characterization of the Dispersion State of Single-Walled Carbon Nanotubes (단일벽 탄소나노튜브의 분산도 정량적 평가)

  • Yoon, Do-Kyung;Choi, Jae-Boong;Kim, Young-Jin;Baik, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.483-489
    • /
    • 2007
  • We have investigated quantitative measurement techniques of the degree of dispersion of single-walled carbon nanotubes (SWNTs). SWNTs were suspended in aqueous media using a sodium dodecyl sulfate (SDS) surfactant. SWNTs with different dispersion states were prepared by controlling the intensity and time of sonication and centrifugation. The laser spectroscopic techniques were employed to characterize the dispersion state; i.e., raman fluorescence and absorption spectroscopic techniques. Raman spectroscopy has been used to probe the dispersion and aggregation state of SWNTs in solution. Individually suspended SWNTs show increased fluorescence peaks and decreased roping peaks at a raman shift 267 $cm^{-1}$ compared with the samples containing bundles of SWNTs. The ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum of decanted supernatant samples show sharp van Hove singularity peaks

Effects of Activated Carbon on Growth and Physical Responses of Indoor Plant Dracaena braunii to Alleviate Salt-induced Stress in Water Culture (수경재배 시 염소흡착을 위한 활성탄 처리가 실내식물인 개운죽(Dracaena braunii)의 생육 및 생리에 미치는 영향)

  • Ju, Jin Hee;Son, Hye Mi;Kim, Won Tae;Yoon, Yong Han
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • This study aimed to analyze the growth and physical responsees of Dracaena braunii in response salt accumulation in ornamental water culture and to examine the effect of activated carbon on this growth response. The experiment was conducted in a plant growth chamber and the indoor environmental conditions of the chamber were set at $23{\pm}1^{\circ}C$ temperature, $70{\pm}3%$ humidity, and 1,000 lux brightness. The observation of the growth response of plants in the presence of activated carbon showed that the pH with activated carbon maintained sub-acidic to neutral (6.27~7.32) conditions and showed decreased electric conductivity in the media. As the treatment with added activated carbon showed good growth and physical responses, this indicated that absorption effect of activated carbon had a positive influence on the growth of plants. However, as the absorption effect of activated carbon may decrease over time and the use of high concentrations of activated carbon might cause nutrition shortage, various concentration of activated carbon and their absorption effects need to be investigated in the future.

Corrections and Artifacts Regarding Filter-based Measurements of Black Carbon (필터 기반 블랙카본 측정에서의 보정과 불확실성에 대한 고찰)

  • Lee, Jeonghoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.610-615
    • /
    • 2018
  • A filter-based optical technique is one of the representative ways for the measurement and quantification of black carbon (BC). Since the filter-based technique adopts a simple principle, it is easy to put into practical use and instrumental products have already been commercialized. In this study, however, the absorption coefficients of BC after the correction process was estimated to be approximately 3 times lower than those before the correction process. In addition, the difference between before and after corrections was also evident for the trend of increasing and decreasing absorption coefficient. When BC concentration is low, uncertainty may increase regardless of corrections due to the artifacts of filter. In this sense, techniques without using a filter are required, and uncertainties will be minimized if these techniques are used to further complement the filter-based black carbon measurements. Finally, this study is believed to help understand the uncertainty and correction of filter-based black carbon measurements.

Substituent Effect in the Reaction of Carbon Dioxide with Amine-Based Absorbent (치환기 특성에 따른 아민흡수제와 CO2의 반응특성 평가)

  • Shim, Jae-Goo;Lee, Junghyun;Jung, Jin-Kyu;Kwak, No-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2020
  • The reaction of carbon dioxide with the amine-based absorbents which have various substituents in the molecule was described. In the case of MEA which is a representative primary amine, the absorption reaction was proceeded very fast while the regeneration reaction was took place slowly due to the strong bond strength between the absorbent and carbon dioxide. The more substituents on N atom of the absorbent, the slower the absorption reaction between carbon dioxide and the absorbent, which in turn causes faster the regeneration rate from the reaction intermediate, carbamate.