• Title/Summary/Keyword: Carbon Rod

Search Result 154, Processing Time 0.019 seconds

An Experimental study on Shear Resisting Effect of Reinforced Concrete Beams Filling-up Carbon Fiber Rod Plastic (CFRP-Rod로 전단 보강된 철근콘크리트 보의 전단거동에 관한 실험적 연구)

  • Kim, Young-Sik;Park, Sung-Moo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.183-190
    • /
    • 2005
  • The purpose of this study is to investigate experimentally the shear resisting behavior of the reinforced concrete beams strengthened with reinforcement materials(CFRP). Five specimens were manufactured and tested under, static monotonic loading. The main variables In the test were a space and volume of reinforcement. The test result indicated that the method of CFRP increase significantly the shear strength of a reinforced concrete beam

  • PDF

Strengthening Capacity of Bridge Deck Strengthened with Carbon Fiber Rod and Polymer Mortar (고강도 폴리머 모르타르 및 탄소섬유 봉(Rod)으로 보강된 교량 바닥판의 보강성능)

  • Sim Jongsung;Moon Do-Young;Ju Mm-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.213-220
    • /
    • 2004
  • This paper deals with an enhanced structural capacity of reinforced concrete bridge deck strengthened with carbon fiber rod (CFR) which is subjected to monotonic and cyclic loads. Strengthening variables considered in this test were evenly and unevenly strengthening type. To evaluate strengthening capacity for these two strengthening types, load-carrying capacity and crack and failure pattern from the failure test were analyzed and fatigue response were examined. According to the test results, all the strengthened specimens showed punching shear failure as a result of premature failure of bonding interface between mortar and concrete. In the case of strengthening capacity, it was observed that the strengthened specimens was more effective in strength, stiffness and fatigue endurance limit than the unstrengthened specimen. In addition, the unevenly strengthening method (CR-UE) was more effective than the evenly strengthening method (CR-E).

Tensile Properties of CFRP Rod and U Type Anchor manufactured by UCAS Method (UCAS 공법에 의해서 제작된 CFRP rod와 U형 앵커의 인장특성)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Important material properties of UCAS rod can divide by tension characteristic of base rod part and both end part of U type anchor. Tensile properties of base rod part need as concrete reinforcement material as an alternative material of reinforcing rod, and tensile properties of U type anchor is used at connection with UCAS rod. This treatise carry out tensile test of UCAS rod, examine necessary properties such as strength, elastic modulus and maximum capacity of UCAS rod as reinforcement material of concrete. Also, to examine material properties carry out tensile test of U type anchor.

  • PDF

Development of the CFRP Automobile Parts Using the Joint Structure of the Dissimilar Material (결합부 강화구조용 탄소복합재 자동차 부품 개발)

  • Ko, Kwan Ho;Lee, Min Gu;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this study, the development purpose is to replace steel Tie Rod of commercial vehicle to the carbon composite by a braiding process. CFRP tie rod was designed to meet the performance requirements of existing products by designing the cross section of the core for braiding weaving and the structural design of the joint between the core and the carbon fiber. The specimens were fabricated by braiding method and applied to structural analysis through test evaluation. The manufacturing process proceeded from braiding to infusion through post-curing process. The test evaluation of the final product was satisfactorily carried out by sequentially performing tensile test, torsion test, compression test and fatigue test. In addition, the weight of CFRP tie rod could be reduced by about 37% compared to existing products.

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

An Experimental Study on Shear Resisting Effect of Reinforced Concrete Beams Filling-up Carbon Fiber Rod Plastic (CFRP로 매립 보강된 RC보의 전단 보강 효과에 관한 실험적 연구)

  • Kim, Young-Sik;Lee, Hyung-Seok;Park, Sung-Moo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.187-194
    • /
    • 2005
  • The purpose of this study is to investigate experimentally the shear resisting behavior of the reinforced concrete beams strengthened with reinforcement materials. Seven specimens were manufactured and tested under static monotonic loading. The main variables in the test were the method and direction of reinforcement. This research is about the experiment of shear capacity of reinforced concrete beams strengthened with CFRP-rod, in the filling-up method. The test result indicated that the method of CFRP increase significantly the ultimate shear strength of a reinforced concrete beam.

An Approximate Model for Predicting Roll Force in Rod Rolling

  • Lee, Youngseog;Kim, Hong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.501-511
    • /
    • 2002
  • This paper presents a study of the effect of rolling temperature, roll gap (pass height), initial specimen size and steel grades of specimens on the roll force in round-oval-round pass sequence by applying approximate method and verifications through single stand pilot rod rolling tests. The results show that the predicted roll forces are in good agreement with the experimentally measured ones. The approximate model is independent of the change of roll gap, specimen size and temperature. Thus, the generality of the prediction methodology employed in the approximate model is proven. This study also demonstrates that Shida's constitutive equation employed in the approximate model needs to be corrected somehow to be applicable for the medium and high carbon steels in a lower temperature interval (700∼900$\^{C}$).

Interfacial Evaluation and Microfailure Mechanisms of Carbon Fiber/Bismaleimide (BMI) Composites using Tensile/compressive Fragmentation Tests and Acoustic Emission (인장/압축 Fragmentation 시험법과 음향방출을 이용한 Carbon Fiber/Bismaleimide (BMI) Composites 의 계면 평가와 미세파괴 메커니즘 연구)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.79-83
    • /
    • 2000
  • Interfacial and microfailure properties of carbon liber/bismaleimide (BMI) composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Since BMI is rather difficult matrix to apply for the conventional fragmentation test because of its too low elongation and too brittle and high modulus properties, dual matrix composite system was applied. After carbon fiber/BMI composite was prepared for rod shape by controlling differing curing stage, composites rod was embedded in toughened epoxy as outer matrix. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile testing, whereas the diagonal slippage in fiber ends was observed during compressive test. On the other hand, AE amplitudes of BMI matrix fracture were higher than carbon fiber tincture under tensile test because BMI matrix has very brittle and high modulus. The waveform of signals coming from BMI matrix fractures was consistent with AE amplitude result under tensile tests.

  • PDF

Wrinkle Defect of Low Carbon Steel in Wire Rod Rolling (저탄소강 선재 압연의 주름성 결함)

  • Kim H. Y.;Kwon H. C.;Byon S. M.;Park H. D.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.307-316
    • /
    • 2004
  • This study examined the cause of the wrinkle defect which is frequently encountered in wire rod rolling of low carbon steel$(C0.08\~0.13wt.\%)$. Even a small defect on the surface of rolled bars can easily develop into fatal cracks during cold heading process of low carbon steel, and it is therefore necessary to minimize inherent defects on the surface of hot rolled bars. Hot rolling process of low carbon steel was analyzed to identify the cause of the wrinkle defect in conjunction with FE analysis. The integrated analysis revealed that the wrinkle defect initiated in the first stage of rolling, and it was at the billet edge where severe deformation and drastic temperature drop were present. To elucidate the micro-mechanical mechanism of the wrinkle defect, hot compression tests were carried out at various temperatures and strain rates using Gleeble-3800. The surface profile of the each other compressed specimens was compared, and rough surface lines were observed at relatively low temperatures. Those surface defects can develop into wrinkles during multi-pass rolling. To control the wrinkle defect in rolling, it is necessary to design an adequate caliber which can minimize the loss of ductility, and thereby prevent flow localization. To use the result of this study fur other steels, the quantitative measure of the wrinkle defect and flow localization parameter should be proposed.

  • PDF

Assessment of Performance and Cost-Effectiveness for the Rockfall Protection Fence Using a High Carbon Steel Wire Rod (고장력 경강선을 적용한 낙석방지울타리의 성능 및 경제성 평가)

  • Lee, Yong-Joo;Na, Seung-Min;Hwang, Young-Cheol;You, Byung-Ok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.910-920
    • /
    • 2008
  • In Korea, more than 70% of the territory consists of mountains. Therefore, the construction of roads and railways has generally involved with a steep rock slope in which the event of rockfalls are often occurred due to the weathered rock conditions and rainfalls etc. This is dangerous when the rock falls into the road and railway on which vehicles and trains are running. In order to prevent such rockfalls, the rockfall protection fence consisting of post, wire rope, and PVC coating steel net has most used at the bottom of rock slopes. In a general practice, an absorbing rockfall energy, 50kJ is specified by the Ministry of Construction and Transportation. However, questions still remain about whether the rockfall protection fence works effectively or not. In this study, a typical wire rope used in the standard rockfall protection fence was replaced by the high carbon steel wire rod and to validate its capacity of rockfall energy absorbing the field rockfall tests were conducted. The testing results show that a new rockfall protection fence using the high carbon steel wire rods can absorb the rockfall energy more than 50kJ and 20% of construction cost was saved in comparison with the previous rockfall protection fence.

  • PDF