• Title/Summary/Keyword: Carbon Paste

Search Result 294, Processing Time 0.034 seconds

Physical/Chemical Characterization of Ordinary Portland Cement/Ground Granulated Blast Furnace Slag Pastes Containing Low Carbon Steel as Reinforcements

  • Hwang, Jin-Ha
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • The interface between low carbon steel and blended cement pastes containing slag was investigated using impedance spectroscopy. In addition, the pastes were characterized by several analytical methods (XRD, EDX, electrode potential, pH and ICP). The electrical behavior of the interface in the blended slag systems is correlated to its corresponding pore solution chemistry and the products present in the interface. Passivation occurred at the paste/steel interfaces, in cement pastes up to containing from 0 to 75% slag content. 100% slag paste induced corrosion of the low carbon steel, which could be explained by the influence of sulfur on the system.

Fabrication of polymer thick film resistor and study on resistance variation regarding curing temperature (폴리머 후막 저항체의 제작 및 경화 온도에 따른 저항 값 변화에 대한 연구)

  • Yoo, Myong-Jae;Lee, Sang-Myong;Park, Seong-Dae;Kang, Nam-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.212-213
    • /
    • 2006
  • Polymer thick film resistor paste was fabricated using various materials. Inorganic materials of carbon black and graphite were selected as fillers and epoxy resin was selected as organic material. Solvent with high boiling temperature was applied to adjust viscosity. A designed test coupon pattern was used to evaluate fabricated resistors. Aspect ratio of 1 was selected for evaluating resistor values. Electrical properties of fabricated resistors were measured and their values analyzed in relation to paste composition. PTF fabricated using carbon black as fillers achieved resistor value of $530{\Omega}/sq$.

  • PDF

Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste (알칼리 활성화된 고로슬래그 페이스트의 물리화학적 특성 및 이산화탄소 흡수능 평가)

  • Ahn, Hae Young;Park, Cheol Woo;Park, Hee Mun;Song, Ji Hyeon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.

Performance of carbon fiber added to anodes of conductive cement-graphite pastes used in electrochemical chloride extraction in concretes

  • Pellegrini-Cervantes, M.J.;Barrios-Durstewitz, C.P.;Nunez-Jaquez, R.E.;Baldenebro-Lopez, F.J.;Corral-Higuera, R.;Arredondo-Rea, S.P.;Rodriguez-Rodriguez, M.;Llanes-Cardenas, O.;Beltran-Chacon, R.
    • Carbon letters
    • /
    • v.26
    • /
    • pp.18-24
    • /
    • 2018
  • Pollution of chloride ion-reinforced concrete can trigger active corrosion processes that reduce the useful life of structures. Multifunctional materials used as a counter-electrode by electrochemical techniques have been used to rehabilitate contaminated concrete. Cement-based pastes added to carbonaceous material, fibers or dust, have been used as an anode in the non-destructive Electrochemical Chloride Extraction (ECE) technique. We studied the performance of the addition of Carbon Fiber (CF) in a cement-graphite powder base paste used as an anode in ECE of concretes contaminated with chlorides from the preparation of the mixture. The experimental parameters were: 2.3% of free chlorides, 21 days of ECE application, a Carbon Fiber Volume Fraction (CFVF) of 0.1, 0.3, 0.6, 0.9%, a lithium borate alkaline electrolyte, a current density of $4.0A/m^2$ and a cement/graphite ratio of 1.0 for the paste. The efficiency of the ECE in the traditional technique using metal mesh as an anode was 77.6% and for CFVF of 0.9% it was 90.4%, with a tendency to increase to higher percentages of the CFVF in the conductive cement-graphite paste, keeping the pH stable and achieving a homogeneous ECE in the mass of the concrete contaminated with chlorides.

Effects of Limestone Powder on the Fluidity of Ordinary Portland Cement Paste (보통 포틀랜드 시멘트 페이스트의 유동특성에 미치는 석회석 미분말의 영향)

  • Lee, Seung-Heun;Park, Jeong-Soo;Lee, Jeong-In;Cho, Jae-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • This study examines the effects of limestone's factors on the fluidity of cement paste when of up to 15%. As the substitution ratio of limestone powder increases, the fluidity of the paste is also improved; however, it has no correlation to the $CaCO_3$ content of the limestone, fineness of the limestone, and fluidity of the pastes. Regardless of clay content of the limestone, it showed a similar mini-slump, so there was no correlation between the clay content and the fluidity of the paste. Also, the total organic carbon content of the limestone and the fluidity of the paste showed no correlation. Regardless of the limestone's grade or fineness, n value of powder gained by using the Rosin-Rammler distribution function showed that the fluidity of the paste increased as the n value reduced. It was also shown that particle size distribution of ordinary Portland cement with limestone powder had a major effect on the fluidity of the paste.

Effect of PbO on the Field Emission Characteristics of Carbon Nanotube Paste

  • Kim, Jun-Seop;Goak, Jeung-Choon;Lee, Han-Sung;Jeon, Ji-Hyun;Kim, Jin-Hee;Lee, Yeon-Ju;Hong, Jin-Pyo;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1225-1228
    • /
    • 2006
  • In the CNT paste for field emission, PbO frit had a fatal influence on CNTs by accelerating a decomposition of CNTs during firing. In the thermogravimetric analysis on the mixtures of CNTs and other ingredients, it was evident that CNTs began to burn out at ${\sim}350^{\circ}C$ by reacting with PbO. This problem was overcome by replacing the PbO frit by the Pb-free frit such that most of CNTs could survive during firing. Consequently, the emission current of the CNT paste prepared using the lead-free frit was improved as much as 250 %, compared to the PbO-containing one. The CNT paste was further optimized by adding a dispersant, whose dispersibility was assessed by measuring the resistance of the paste. With 10% dispersant added, the emission properties of the paste was greatly enhanced as 50 times higher as those of the paste without a dispersant.

  • PDF

Evaluation on the Mechanical Performance and Microstructure of Cement Pastes Using Carbon Nanotube (탄소나노튜브 적용 시멘트 페이스트의 역학적 성능 및 미세구조 평가)

  • Chae-Ik, Lim;Se-Ho, Park;Won-Woo, Kim;Jae-Heum, Moon;Seung-Tae, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.489-497
    • /
    • 2022
  • In this study, the fluidity, mechanical properties and microstructure of cement pastes with carbon nanotube (CNT) were experimentally investigated. The 6 types of cement paste mixes with different PCE:CNT and w/b had been manufactured, and several tests including flow, compressive strength, absorption and water porosity were performed on cement pastes with or without CNT.Additionally, microstructural observations such as x-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out to examine hydrates formed in cement paste with CNT. As a result, it was found that the performance of cement pastes with CNT was better compared to that of control cement paste (OPC) due to both of hydration acceleration effect and filling effect. Furthermore, the SEM images clearly showed that CNT can bridge cracks formed in cement matrix. Conclusively, it is believed that the CNT, if mixed appropriately, could be an option as nono-materials to improve performance of concrete structures.

Diffusivity of Carbon Dioxide in Concrete (콘크리트 내 이산화탄소 확산계수 예측에 관한 연구)

  • 오병환;정상화;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.669-674
    • /
    • 2003
  • The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. The test results indicate that the diffusion coefficient increases with the increase of water-cement ratio. The diffusion coefficient decreases with the increase of relative humidity at the same water-cement ratio. The diffusion of carbon dioxide reached the steady-state within about five hours after exposure. It was found that the diffusion coefficient of cement paste is larger then that of concrete or mortar. The quantitative values of diffusivity of carbon dioxide in this study will allow more realistic assessment of carbonation depth in concrete structures.

  • PDF

Electrochemical Characteristics of EDLC Fabricated by Different Preparation Processes of Activated Carbon Electrode (활성탄소 전극의 제조공정에 따른 EDLC의 전기화학적 특성)

  • Yang Chun-Mo;Kim H.J.;Cho W.I.;Cho B.W.;Yun K.S.;Rim Byung-O
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.98-103
    • /
    • 2001
  • The electrochemical characteristics and specific capacitance were investigated by preparation processes (dip coating method, doctor blade coating method and paste rolling method) of activated carbon electrode for an EDLC(electric double layer capacitor). The EDLC using $LiPF_6$ salts and PC-DEC solvents showed good specific capacitance, 130F/g and small IR-drop at linear time-voltage curve. 0.11V, Cyclic voltammetry analysis using the activated carbon electrode prepared by dip coating method was shown closer to ideal EDLC characterization.