• Title/Summary/Keyword: Carbon Oxide

Search Result 1,175, Processing Time 0.031 seconds

Output Characteristics of Carbon-nanotube Field-effect Transistor Dependent on Nanotube Diameter and Oxide Thickness (나노튜브 직경과 산화막 두께에 따른 탄소나노튜브 전계 효과 트랜지스터의 출력 특성)

  • Park, Jong-Myeon;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.87-91
    • /
    • 2013
  • Carbon-nanotube field-effect transistors (CNFETs) have drawn wide attention as one of the potential substitutes for metal-oxide-semiconductor field-effect transistors (MOSFETs) in the sub-10-nm era. Output characteristics of coaxially gated CNFETs were simulated using FETToy simulator to reveal the dependence of drain current on the nanotube diameter and gate oxide thickness. Nanotube diameter and gate oxide thickness employed in the simulation were 1.5, 3, and 6 nm. Simulation results show that drain current becomes large as the diameter of nanotube increases or insulator thickness decreases, and nanotube diameter affects the drain current more than the insulator thickness. An equation relating drain saturation current with nanotube diameter and insulator thickness is also proposed.

Microfabrication of Vertical Carbon Nanotube Field-Effect Transistors on an Anodized Aluminum Oxide Template Using Atomic Layer Deposition

  • Jung, Sunghwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1169-1173
    • /
    • 2015
  • This paper presents vertical carbon nanotube (CNT) field effect transistors (FETs). For the first time, the author successfully fabricated vertical CNT-based FETs on an anodized aluminum oxide (AAO) template by using atomic layer deposition (ALD). Single walled CNTs were vertically grown and aligned with the vertical pores of an AAO template. By using ALD, a gate oxide material (Al2O3) and a gate metal (Au) were centrally located inside each pore, allowing the vertical CNTs grown in the pores to be individually gated. Characterizations of the gated/vertical CNTs were carried and the successful gate integration with the CNTs was confirmed.

Synthesis of Biodegradable Polymers with Carbon Dioixde (이산화탄소를 이용한 생분해성 고분자의 합성)

  • Shin Sang Chul;Shin Jae Shik;Lee Yoon Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.521-525
    • /
    • 2004
  • Biodegradation of poly(ethylene carbonate) (PEC) and their terpolymers has been investigated in vitro. PEC has been synthesized with ethylene oxide (EO) and carbon dioxide, which is one of the greenhouse gases using Zinc glutarate has been used as catalyst Carbonate terpolymers have been prepared by the use of EO, cyclohexene oxide(CHO), and carbon dioxide. High biodegradability of PEC and terpolymers with EO. has been observed. Very low biodegradation of poly(propylene carbonate) (PPC) and poly(cyclohexene carbonate) (PCHC) has been shown. The weight loss, FT-IR and SEM have been employed to characterize biodegradability.

  • PDF

A Study on the Catalytic Oxidation Reaction of Carbon Monoxide with Nickel Oxide (NiO 촉매에 의한 CO 산화반응에 관한 연구)

  • Jae Shi Choi;Keu Hong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.241-247
    • /
    • 1969
  • The catalytic reaction between carbon monoxide and oxygen was investigated with the various nickel oxide catalysts at different partial pressures of carbon monoxide and oxygen and at reaction temperatures in the region of 120$^{circ}$to 250$^{circ}C$. The reaction has the highest rate with the nickel oxide catalyst which is sintered at low temperature. A reaction mechanism to explain the data is derived. From the Arrhenius equation, the activation energies in the region of experimental temperatures are found to be from 5.49 to 9.15 kcal/mole. The concentration of excess oxygen in the nickel oxide seems to vary according to the sintering temperatures and periods and is the controlling factor in determining the type of kinetics followed by the catalytic reaction.

  • PDF

Position-Selective Metal Oxide Nanostructures using Atomic Thin Carbon Layer for Hydrogen Gas Sensors

  • Yu, Hak Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.369-373
    • /
    • 2020
  • A hydrogen sensor was fabricated by utilizing a bundle of metal oxide nanostructures whose growth positions were selectively controlled by utilizing graphene, which is a carbon of atomic-unit thickness. To verify the reducing ability of graphene, it was confirmed that the multi-composition metal oxide V2O5 was converted into VO2 on the graphene surface. Because of the role of graphene as a reducing catalyst, it was confirmed that ZnO and MoO3 nanostructures were grown at high density only on the graphene surface. The fabricated gas sensor showed excellent sensitivity.

Properties of Cement Mortar with Graphene Oxide and Admixture (산화 그래핀과 혼화제를 혼입한 시멘트 모르타르의 특성)

  • Kim, Wan-Su;Park, Chang-Gun;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.261-262
    • /
    • 2023
  • Nanomaterials are being actively studied in the fields of cement and concrete. However, research on other nanomaterials is insufficient because much of the carbon-based nanomaterials are made up of carbon nanotubes. Therefore, in this study, carbon-based water-soluble graphene oxide was mixed into mortar according to the cement replacement rate to conduct a characteristic evaluation. As a result, as the substitution rate of graphene oxide increased, workability decreased, and there was no effect of enhancing compressive strength. In addition, it was confirmed that the compressive strength decreased due to a large amount of air bubbles when the mixture was mixed for the purpose of improving workability.

  • PDF

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1171-1174
    • /
    • 2007
  • We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

Wireless Graphene Oxide-CNT Bilayer Actuator Controlled with Electromagnetic Wave (전자기웨이브에 의해 제어되는 무선형 그래핀-카본나노튜브 액츄에이터)

  • Xu, Liang;Oh, Il-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.282-284
    • /
    • 2011
  • Based on graphene oxide and multi-walled carbon nanotube layers, a wireless bi-layer actuator that can be remotely controlled with an electromagnetic induction system has been developed. The graphene-based bi-layer actuator exhibits a large one-way bending deformation under eddy current stimuli due to asymmetrical responses originating from the temperature difference of the two different carbon layers. In order to validate one-way bending actuation, the coefficients of thermal expansion of carbon nanotube and graphene oxide are mathematically formulated in this study based on the atomic bonding energy related to the bonding length. The newly designed graphene-based bi-layer actuator is highly sensitive to electromagnetic wave irradiation thus it can trigger a new actuation mode for the realization of remotely controllable actuators and is expected to have potential applications in various wireless systems.

  • PDF

Carbothermal Reduction of Spray Dried Titanium-Cobalt-Oxygen Based Oxide Powder by Solid Carbon (분무건조법에 의해 제조된 Ti-Co-O계 산화물 분말의 고체 탄소에 의한 환원/침탄)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • In the present study, the focus is on the analysis of carbothermal reduction of the titanium-cobalt-oxygen based oxide powder by solid carbon for the optimizing synthesis process of ultra fined TiC/Co composite powder. The titanium-cobalt-oxygen based oxide powder was prepared by the combination of the spray drying and desalting processes using the titanium dioxide powder and cobalt nitrate as the raw materials. The titanium-cobalt-oxygen based oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixture during carbothermal reduction were analysed using XRD and TGA. The synthesized titanium-cobalt-oxygen based oxide powder has a mixture of $TiO_2$ and $CoTiO_3$. This oxide powder was transformed to a mixed state of titanium car-bide and cobalt by solid carbon through four steps of carbothermal reduction steps with increasing temperature; reduction of $CoTiO_3$ to $TiO_2$ and Co, reduction of $TiO_2$, to the magneli phase($Ti_nO_{2n-1}$, n>3), reduction of the mag-neli phase($Ti_nO_{2n-1}$, n>3) to the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases, and reduction and carburization of the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases to titanium carbide.

Recent Research Trends of Catalytic Conversion of CO2 to High-value Chemicals (촉매 전환을 이용한 이산화탄소의 고부가 가치제품 생산에 대한 최근 연구 동향)

  • Song, Ki-Hun;Ryu, Jun-hyung;Chung, Jong-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.519-530
    • /
    • 2009
  • Reducing the emission of carbon dioxide, which is the main contributor to the green house effect, is becoming a global hot issue. Great attention has been thus given to utilization of carbon dioxide rather than just capturing and isolating it because it could convert carbon dioxide to high-value chemicals. In this paper, recent research trends are investigated on the catalytic conversion of carbon dioxide to syngas in the context of $CH_4$, dry-reforming, trireforming, and the electro-catalytic conversion of carbon dioxide through SOFC(Solid Oxide Fuel Cell) system. Research trends for utilizing syngas to high-value-added useful products, mainly fuel such as DME(Dimethyl Ether) are also discussed.