• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.027 seconds

Effect of Liquid Surface Treatments on Field Emission Properties of Carbon Nanotube Cathodes

  • Lee, Ji-Eon;An, Young-Je;Shin, Heon-Cheol;Chung, Won-Sub;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.486-489
    • /
    • 2007
  • Carbon nanotube (CNT) cathodes having a trench structure similar to the structure of the gated triodetype cathode were successfully fabricated by a screenprinting method with multi-walled carbon nanotubes. We observed that a liquid method not only readily removes the organic residues on the CNT films, but also satisfactorily protrudes the CNTs out of the electrode surface. The CNT cathodes prepared by the liquid method showed a turned-on field of $1.4\;V/{\mu}m$. The emission current density of them was about $3.1\;mA/cm^2$ at the electric field of $3\; V/{\mu}m$. The liquid method appears to be a promising surface treatment of CNT cathode for gated triode-type FEDs applications.

  • PDF

Effect of Adding Crosslinked Particles on Rheological and Electrical Properties of Polystyrene/Carbon Nanotube Nanocomposites (가교 입자 첨가가 폴리스티렌/탄소나노튜브 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향)

  • Yeom, Hyo Yeol;Na, Hyo Yeol;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.767-773
    • /
    • 2014
  • Rheological and electrical properties of polystyrene (PS)/carbon nanotube (CNT) nanocomposites via coagulated precipitation were investigated. Chemical modification and surfactant wrapping of CNT to improve the dispersion of CNTs may reduce the intrinsic properties of pristine CNT. To avoid this problem, PS and CNTs were dissolved and dispersed in dimethylformamide and then PS/CNT nanocomposites were prepared by the coagulated precipitation of CNT-dispersed PS solution in water. The coagulated precipitation method was highly effective enhancing the electrical conductivity of nanocomposites. Furthermore, the effect of adding poly(styrene-co-divinylbenzene) crosslinked particles to PS matrix on the rheological and electrical properties was investigated. With the addition of the crosslinked particles, the electrical percolation threshold of CNT reduced to 0.25 wt% and electrical conductivity increased further. It is speculated that CNTs in the volume occupied by crosslinked particles helped electrical pathway formation.

Compressional Behavior of Carbon Nanotube Reinforced Mesophase Pitch-based Carbon Fibers

  • Ahn Young-Rack;Lee Young-Seak;Ogale A.A.;Yun Chang-Hun;Park Chong-Rae
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.85-87
    • /
    • 2006
  • The tensile-recoil compressional behavior of the carbon nanotube reinforced mesophase pitch (MP)-based composite carbon fibers (CNT-re-MP CFs) was investigated by using Instron and SEM. The CNT-re-MP CFs exhibited improved, or at least equivalent, compressive strength as compared with commercial MP-based carbon fibers. Particularly, when CNT of 0.1 wt% was reinforced, the ratios of recoil compressive strengths to tensile strength of CNT-re-MPCFs were much higher (the difference is at least 10 % or higher) than those for the commercial counterparts and even than those for PAN-based commercial carbon fibers. FESEM micrographs showed somewhat different fractography from that of a typical shear failure as the CNT content increased.

Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas (암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성)

  • Lee, Sunwoo;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.782-785
    • /
    • 2013
  • Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.

Field Emission Characteristics of Carbon Nanotube Cathode Using Ag Nano-Powder as Bonding Materials

  • An, Young-Je;Ha, Sang-Hoon;Choi, Young-Jun;Chang, Ji-Ho;Lee, Hong-Chan;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1594-1597
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver powders as a bonding material. The effects of powder size on the field emission properties for the CNT cathode were investigated The better emission properties of CNT cathodes using smaller particles are due to a low sintering temperature of the bonding materials.

  • PDF

Characteristics of CNT Field Effect Transistor (탄소나노튜브 트랜지스터 특성 연구)

  • Park, Yong-Wook;Na, Sang-Yeob
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.1
    • /
    • pp.88-92
    • /
    • 2010
  • Bottom gate and top gate field-effect transistor based carbon nanotube(CNT) were fabricated by CMOS process. Carbon nanotube directly grown by thermal chemical vapor deposition(CVD) using Ethylene ($C_2H_4$) gas at $700^{\circ}C$. The growth properties of CNTs on the device were analyzed by SEM and AFM. The electrical transport characteristics of CNT FET were investigated by I-V measurement. Transport through the nanotubes is dominated by holes at room temperature. By varying the gate voltage, bottom gate and top gate field-effect transistor successfully modulated the conductance of FET device.

Microfabrication of Vertical Carbon Nanotube Field-Effect Transistors on an Anodized Aluminum Oxide Template Using Atomic Layer Deposition

  • Jung, Sunghwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1169-1173
    • /
    • 2015
  • This paper presents vertical carbon nanotube (CNT) field effect transistors (FETs). For the first time, the author successfully fabricated vertical CNT-based FETs on an anodized aluminum oxide (AAO) template by using atomic layer deposition (ALD). Single walled CNTs were vertically grown and aligned with the vertical pores of an AAO template. By using ALD, a gate oxide material (Al2O3) and a gate metal (Au) were centrally located inside each pore, allowing the vertical CNTs grown in the pores to be individually gated. Characterizations of the gated/vertical CNTs were carried and the successful gate integration with the CNTs was confirmed.

Development of Two-Step Surface Treatment on Carbon Nanotube Cathode for Backlight Unit Application

  • Ha, Sang-Hoon;Jung, Dea-Hwa;Park, Ki-Jung;Kwon, Na-Hyun;Choi, Young-Jun;Chang, Ji-Ho;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.152-155
    • /
    • 2009
  • A novel two-step surface treatment was developed and demonstrated for the carbon nanotube (CNT) cathode with highly efficient backlight unit application. An adhesive taping method was applied firstly and then followed by a post-heat treatment for the CNT cathode. During the postheat treatment process, some residues covering the CNTs were burned out. The post-heat treatment enhanced the emission current of the CNT cathode around 20% compared with that of no heat-treated sample.

  • PDF

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.