• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.026 seconds

Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties (카본나노튜브에 담지된 몰리브데늄 카바이드 촉매의 제조 및 전기화학적 산화반응 특성)

  • Cho, Hong-Baek;Suh, Min-Ho;Park, Yeung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2009
  • Carbon nanotube supported molybdenum carbide catalysts were prepared as a function of various preparation conditions and characterized, and their catalytic activities were compared through electrochemical oxidation of methanol. To overcome the low activity of a transition metal catalyst, carbon nanotube was used as a support, and the amount and the kind of precursors, acid treatment method, and carburization temperature were varied for the catalyst preparation. ICP-AES, XRD and TEM were used for the catalyst characterization. Based on the various preparation methods of carbon nanotube supported molybdenum carbide catalysts ($Mo_2C/CNT$), the size and the amount of supported catalysts could be controlled, and their effects on the electrochemical oxidation could be explained.

Preparation of Bio-Chemical Sensor Electrodes by Using Electrical Impedance Properties of Carbon Nanotube Based Bulk Materials (탄소나노튜브 기반 벌크 소재의 전기적 임피던스 특성을 이용한 생화학 센서용 전극 개발 연구)

  • So, Dae-Sup;Huh, Hoon;Kim, Hee-Jin;Lee, Hai-Won;Kang, In-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.495-499
    • /
    • 2010
  • To develop chemical and biosensors, this paper studies sensing characteristics of bulk carbon nanotube (CNT) electrodes by means of their electrical impedance properties due to their large surface area and excellence chemical absorptivity. The sensors were fabricated in the form of film and nano web style by using composite process for mass production. The bulk composite electrodes were fabricated with singlewall and multi-wall carbon nanotubes based on host polymers such as Nafion and PAN, using a solution-casting and an electrospinning technique. The resistance and the capacitance of electrodes were measured with LCR meter under the various amounts of buffer solution to study the electrical impedance change properties of them. On the experimental of sensor electrode, impedance characteristics of the composite electrode are affected by its host polymer and nanofiller and its sensing response showed saturated result after applying some amounts of buffer solution for test chemical. Especially, the capacitance values showed drastic changes while the resistance values only changed within few percent range. It is deduced that the ions in the solution penetrated and diffused into the electrodes surface changed the electrical properties of the electrodes much like a doping effect.

The consolidation of CNT/Cu mixture powder using equal channel angular pressing (Equal Channel Angular Pressing 공정을 이용한 CNT/Cu 복합분말의 고형화)

  • Yoon, S.C.;Quang, P.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.119-122
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of 1 vol.% carbon nanotube (CNT)-metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT-Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated 1 vol.% CNT-Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.

  • PDF

Effects of Co Doping on NO Gas Sensing Characteristics of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성에 미치는 코발트 첨가 효과)

  • Jung, Hoon-Chul;Ahn, Eun-Seong;Hung, Nguyen Le;Oh, Dong-Hoon;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.607-612
    • /
    • 2009
  • We investigated the effects of Co doping on the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with ZnO using pulsed laser deposition. Structural examinations clearly confirmed a distinct nanostructure of the CNTs coated with ZnO nanoparticles of an average diameter as small as 10 nm and showed little influence of doping 1 at.% Co into ZnO on the morphology of the ZnO-CNT composites. It was found from the gas sensing measurements that 1 at.% Co doping into ZnO gave rise to a significant improvement in the response of the ZnO-CNT composite sensor to NO gas exposure. In particular, the Co-doped ZnO-CNT composite sensor shows a highly sensitive and fast response to NO gas at relatively low temperatures and even at low NO concentrations. The observed significant improvement of the NO gas sensing properties is attributed to an increase in the specific surface area and the role as a catalyst of the doped Co elements. These results suggest that Co-doped ZnOCNT composites are suitable for use as practical high-performance NO gas sensors.

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.

Characterization of Alpha-Ga2O3 Epilayers Grown on Ni-Pd and Carbon-Nanotube Based Nanoalloys via Halide Vapor Phase Epitaxy (Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석)

  • Cha, An-Na;Lee, Gieop;Kim, Hyunggu;Seong, Chaewon;Bae, Hyojung;Rho, Hokyun;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.25-29
    • /
    • 2021
  • This paper demonstrates the utility of the Ni-Pd and carbon-nanotube (Ni-Pd-CNT)-based nanoalloy to improve the α-Ga2O3 crystal quality using the halide-vapor-phase epitaxy (HVPE) method. As result, the overall thickness of the α-Ga2O3 epitaxial layer increased from a Ni electroless plating time of 40 s to 11 ㎛ after growth. In addition, the surface morphologies of the α-Ga2O3 epilayers remained flat and crack-free. The full-width half-maximum results of the X-ray diffraction analysis revealed that the ($10{\bar{1}}4$) diffraction patterns decreased with increasing nominal thickness.

A Review of Carbon-Reinforced Carbon Nanotube Fibers Composites (탄소강화 탄소나노튜브 섬유 복합소재 연구 동향)

  • Lee, Dongju;Ryu, Seongwoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • Although carbon nanotubes(CNTs) have outstanding theoretical mechanical and electrical properties, CNT fibers(CNTFs) have not yet reached that level. Particularly, tensile strength is only about 10% or less, so studies for making up for it are being actively conducted. As a way for improving mechanical strength, methods such as synthesizing long CNT, orientation, chemical cross-linking, hydrogen bonding and polymer infiltration are being studied. In this review paper, we report preparation methods for highly conductive and strong CNTF/Carbon composites through coating and infiltration followed by carbonization of carbon precursor polymers such as polyacrylonitrile (PAN) and polydopamine (PDA) on CNTFs.

Effect of Acetylene Mixing Rate on Synthesis of Carbon Nanotube (탄소나노튜브의 합성에 대한 아세틸렌 혼합 비율의 영향)

  • Kim, Jae-Hyun;Lee, Joo-Hee;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.768-773
    • /
    • 2014
  • In this study, experimental and numerical studies for the synthesis of carbon nanotube(CNT) in methane counterflow diffusion flame have been performed. Methane mixed with acetylene($C_2H_2$) was used as a fuel gas and ferrocene was used as a catalyst for synthesis of CNT. The major parameters was $C_2H_2$ mixing rate and mixing rates were 2 %, 6 %, and 10 %. Characteristics of CNT formation on grid were analyzed from SEM images. the chemical reaction mechanism adopted is GRI-MECH 3.0. Numerical results showed that flame temperature and CO mole fraction were increased with increasing acetylene mixing rate. Experimental results showed that the CNT synthesis in 2% acetylene mixture flame better than that of 6% and 10% acetylene mixture flames. It can be considered that 6% and 10% acetylene mixture flames generated the excessive carbon source and then it interrupted the supplement of the carbon source into ferrocene catalyst. It can be found that the supply of appropriate quantity of carbon source can make effect to synthesis of high purity of CNT.

Improved Cycle Performance of High-Capacity SiOx Negative Electrodes with Carbon Nanotube Conducting Agents for Lithium-Ion Batteries (탄소나노튜브 도전재 적용을 통한 리튬이온 이차전지용 고용량 SiOx 음극의 사이클 성능개선)

  • Hyang Sun Jeon;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • The carbon-coated silicon monoxide (c-SiOx), which is a negative electrode active material for lithium-ion batteries (LIBs), has a limited cycle performance due to severe volume changes during cycles, despite its high specific capacity. In particular, the significant volume change of the active material can deform the electrode structure and easily damage the electron transfer pathway. To improve performance and mitigate electrode damage caused by volume changes, we replaced parts of the carbon black conducting agent with carbon nanotubes (CNTs) having a linear shape. The content of the entire conductive material in the electrode was fixed at 10% by mass, and the relative content of CNTs ranged from 0% to 25% by mass to prepare electrodes and evaluate electrochemical performance. As the CNT content in the electrode increased, both cycle life and rate capability improved. Even a small amount of CNT can significantly improve the electrochemical performance of a c-SiOx negative electrode with large volume changes. Furthermore, dispersing CNTs effectively can lead to achieving the equivalent performance with a reduced quantity of CNTs.

SWCNT/Nafion Composite Development for Improvement of Mechanical Properties of IPMC (IPMC의 기계적 특성향상을 위한 SWCNT/Nafion 복합체 개발)

  • Kwon, Hui-June;Lee, Heon-Sang;Lee, Jung-Hwa;Jun, Chan-Bong;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • From recent research, it has revealed that Electroacitve polymer(EAP) has a physical limitation. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. In this paper, we suggest the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. Using mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we disperse Single-walled carbon nanotubes(SWCNT). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. In the result, we fabricated a disperse SWCNT/Nafion composite uniformly.