• Title/Summary/Keyword: Carbon Fiber Reinforced Composite

Search Result 685, Processing Time 0.026 seconds

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating (나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상)

  • Seo, Seong-Wook;Ha, Min-Seok;Kwon, Oh-Yang;Cho, Heung-Soap
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

Performance and Feasibility Evaluation of Straight-Type Mixing Head in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material (탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가)

  • Han, Beom Jeong;Jeong, Yong Chai;Hwang, Ki Ha;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-165
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) technology has been commercialized for fast production of fiber reinforced composite materials. The high-pressure mixing head was one of the most core component of the HP-RTM process. In this study, a mixing head was systematically designed, manufactured and evaluated. This mixing head was composed of a nozzle, a mixing chamber, a cleaning piston part, and an internal mold release part. In actual, a straight-type structure was newly designed instead of the conventional L-type structure for improving the maximum mixing pressure and mixing ratio precision. The performance of mixing head was showed maximum mixing pressure of 15.22MPa and mixing ratio precision of 0.12%. CFRP molding experiments were successfully obtained a 6~11 laminating carbon sheet using HP-RTM presses and specimen molds.

A Study on Evaluation of Thermal Conductivity for Carbon -Fiber-Reinforced-Plastics (탄소섬유강화 복합재의 열전도율 평가에 관한 연구)

  • Im, Jae-Gyu;Song, Jun-Hui;Choe, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.553-559
    • /
    • 2002
  • Carbon-fiber which has very small radial dimension makes us difficult to measure it's properties. So in this paper, we suggest a simple method to measure the thermal conductivity of a carbon-fiber's and carbon-fiber-reinforced-plastics(CFRP) laminates. The thermal conductivity of CFRP laminates was measured experimentally at the same time analytically. The experimental model is based on the one-dimensional analysis of fin sample because CFRP laminates has a thin geometric configuration. The analytical model to measure the thermal conductivity of carbon-fiber is expressed by use of mean-field model which is based on Eshelby's elliptical inclusion problem. Therefore the thermal conductivity of angle-ply laminates can be computed by use of effective longitudinal and transverse thermal conductivities of unidirectional composite of the constituents.

Effect of Fiber Orientation on the Friction and Wear Properties of Epoxy-based Composites (섬유 방향에 따른 에폭시 기반 복합재의 마찰 및 마모 특성에 관한 연구)

  • An, Hyo-Seong;Khadem, Mahdi;Chun, Heoung-Jae;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.133-138
    • /
    • 2020
  • In this paper, we present an experimental investigation of the friction coefficient and wear area change of carbon/epoxy and E-glass/epoxy composites depending on the fiber direction (0°/90°). We compared the results of the case where the sliding direction is parallel to the fiber direction (0°) with that of the case where it is perpendicular to the fiber direction (90°). The ball-on-plate wear test equipment was used to cause wear in both directions. Two types of specimens were prepared with thicknesses of 3 mm-one made of carbon fiber reinforced plastic composite (CFRP) and the other of glass fiber reinforced plastic composite (GFRP). A normal force of 20 N was applied to the specimen and the sliding speed was 10 mm/s and the sliding distance was set to 20 m to perform the wear test. The CFRP demonstrates superior tribological characteristics compared to the GFRP. This outcome is attributed to graphitization of carbon, which serves as solid lubricating particles. In addition, both CFRP and GFRP are worn more in the 90° direction than in the 0° direction. This is due to the greater occurrence of fiber breakage and separation in the 90° direction than in the 0° direction. This study is expected to be utilized as basic data for understanding the friction and wear characteristics of CFRP and GFRP composites along the fiber direction and to apply the appropriate material.

A Study on the Pultrusion of Hybrid Composite Tube (하이브리드 복합재료 튜브의 Pultrusion 성형공정연구)

  • 성대영;김태욱;이광주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.180-183
    • /
    • 2001
  • Glass fiber reinforced plastic(CFHP) tent pole fabricated by the pultrusion process with unidirectional glass fiber is two times as heavy as aluminum tent pole owing to the low specific modulus The first objective of this research is the design the high strength and light weight tent pole compete with. the second is the develope glass fiber carbon fiber hybrid tent pole pultrusion process. the third is the evaluate the mechanical properties of the hybrid tent pole compare to these of the duralumin tent pole.

  • PDF

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

Behaviour of carbon fiber reinforced polymer strengthened tubular joints

  • Prashob, P.S.;Shashikala, A P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • This paper highlights the experimental and numerical investigations performed on a tubular T-joint fabricated from circular hollow sections under axial compressive loads applied at the brace. Tests were performed on a reference joint and the joint wrapped with Carbon Fiber Reinforced Polymer (CFRP). The Nitowrap EP carbon fiber with Nitowrap 410 resin serve as a composite material is used for wrapping the T-joint. Schematic diagram of the fabricated tubular joint for the experimental test setup, along with the experimental and numerical results are presented. After performing these experiments, it has been demonstrated that the joint wrapped with CFRP has a better strength and lesser deflection than a reference joint. Finite element analysis carried out in Ansys reveals that the results were in good correlation with the experimental values.

Characteristics of Thermal Degradation for Carbon Fiber/Epoxy Composite using Strand Specimen (스트랜드 인장시편을 적용한 탄소섬유/에폭시 복합재의 열화특성 연구)

  • Oh, Jin-Oh;Kil, Hyung-Bae;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.408-410
    • /
    • 2012
  • In this study, High temperature properties of carbon fiber reinforced composites is performed using strand specimens and resin specimens. As for the tensile test at the different temperature, the tensile modulus of resin specimens decreases slightly until the temperature reaches the glass transition temperature. but the tensile modulus of strand specimens maintains tensile modulus at the room temperature. The tensile strength of resin and strand specimens decreases rapidly until the temperature reaches the glass transition temperature.

  • PDF

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.