• Title/Summary/Keyword: Carbon Fiber Composite Material

Search Result 381, Processing Time 0.027 seconds

Two-Layered Microwave Absorber of Ferrite and Carbon Fiber Composite Substrate

  • Han-Shin Cho;Sung-Soo Kim
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.64-67
    • /
    • 1998
  • Microwave absorbing properties of ferrite-epoxy composite (absorbing layer) attached on the carbon fiber polymer composite (reflective substrate) are analyzed on the basis of wave propagation theory. A modified equation for wave-impedance-matching at the front surface of absorbing layer including the effect of electrical properties of the quasi-conducting substrate is proposed. Based on this analysis, the frequency and layer dimension that produce zero-reflection can be estimated from the intrinsic material properties of the obsorbing layer and the substrate. It is demonstrated that the microwave reflectivity of carbon fiber composite has a strong influence on the microwave absorbance of front magnetic layer.

  • PDF

Study of Manufacturing Process and Properties of C/C Composites with Recycled Carbon Fiber Reinforced Plastics (리싸이클 CFRP 적용 C/C 복합재료 제조 및 특성 연구)

  • Kim, Seyoung;Han, In Sub;Bang, Hyung Joon;Kim, Soo-hyun;Seong, Young-Hoon;Lee, Seul Hee
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 2022
  • This study has a different direction from the existing technology of applying recycled carbon fiber obtained by recycling waste CFRP to CFRP again. A study was conducted to utilize recycled carbon fiber as a raw material for manufacturing a carbon/carbon (C/C) composite material comprising carbon as a matrix. First, it was attempted to recycle a commonly used epoxy resin composite material through a thermal decomposition process. By applying the newly proposed oxidation-inert atmosphere conversion technology to the pyrolysis process, the residual carbon rate of 1~2% was improved to 19%. Through this, the possibility of manufacturing C/C composite materials utilizing epoxy resin was confirmed. However, in the case of carbon obtained by the oxidation-inert atmosphere controlled pyrolysis process, the degree of oxygen bonding is high, so further improvement studies are needed. In addition, short-fiber C/C composite material specimens were prepared through the crushing and disintegrating processes after thermal decomposition of waste CFRP, and the optimum process conditions were derived through the evaluation of mechanical properties.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

The Vibration Characteristic of Carbon-Carbon Composite Material due to Tensile Loading (인장하중에 따른 Carbon/Carbon복합재의 진동특성)

  • Oh, Seung-Gyu;Kwac, Lee-Ku;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.740-744
    • /
    • 2011
  • Carbon-carbon composite material is the reinforced carbon fiber. Because of its high strength, elasticity and the excellent heat-resisting property in high temperature, carbon-carbon composite material has been used in many fields such as aerospace and automotive industries, etc. Especially, aircraft brake discs used at aerospace can be cracked due to its fatigue and vibration under various loading condition. This research is focused on the influence of the vibration of carbon-carbon composite material by using accelerometer with impact hammer excitation. And the change of vibration mode will be known by applying tensile loading test.

Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material (항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

Novel Phenol Resin Carbonizing Method for Carbon Interlayer Coating between Reinforcing Fiber and Matrix in Fiber Reinforced Ceramic Composite (페놀수지 탄화 코팅법을 이용한 섬유강화 복합재료 계면 형성에 관한 연구)

  • Kim, Se-Young;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.301-305
    • /
    • 2009
  • The novel carbon coating process for interlayer of fiber reinforced ceramic composites between fiber and matrix was performed by carbonizing phenolic resin solution that coated on fiber surface in $N_2$ atmosphere at $600^{\circ}C$ to improve the strength and fracture toughness of CMC(ceramic matrix composite). 160 nm carbon layer was coated on fiber surface with 5 vol% of phenolic resin solution. Since the process temperature ($600^{\circ}C$) is lower than chemical vapor deposition($900{\sim}1000^{\circ}C$), the strength and toughness could be preserved. Furthermore the coating thickness uniformity was improved to 8% of deviation along the stacking sequence. Therefore, prevention from fiber degradation during coating process and controlling coating thickness uniformity along the preform depth were achieved by coating with phenolic resin carbonizing method.

Study on the Mechanism of Mechanical Property Enhancement in Carbon Fiber/Flax Fiber Hybrid Composite Materials (탄소섬유/아마섬유 하이브리드 복합재료의 기계적 물성 향상 기구에 관한 연구)

  • Jamil Abuzar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2023
  • Environmental pollution from waste and the climate crisis, due to rising global average temperatures, are reaching critical levels threatening human survival. Research is ongoing across various fields to solve this problem, with a key focus on developing eco-friendly, carbon-neutral materials. Our study aimed to integrate natural fibers, known for their environmentally friendly properties and lower carbon emissions, with carbon fibers. In general, combining high-strength and low-strength materials results in intermediate properties. However, we found that certain properties in our study exceeded those of typical carbon fiber composite materials. To validate this, we produced both carbon fiber composite materials and carbon fiber/natural fiber hybrid composite materials. We then compared their mechanical properties using a range of specific tests. Our results revealed that the hybrid composite material exhibited superior bending strength and fracture toughness compared to the carbon fiber composite material. We also identified the underlying mechanisms contributing to this strength enhancement. This breakthrough suggests that the use of hybrid composite materials may allow the production of stronger structures. Moreover, this can play a significant role in mitigating environmental pollution and the climate crisis by reducing carbon emissions, a major contributing factor to these global challenges.

Optimization of Processing Parameters of Compression Molding of Hybrid Thermoplastic Composites (Hybrid 열가소성 복합재료의 압축성형에서 공정변수의 최적화)

  • 이중희;허석봉;이봉신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.29-32
    • /
    • 2001
  • The objective of this work was to optimize processing parameters of hybrid thermoplastic composites in compression molding. The mechanical properties of the composites manufactured with various forming conditions were measured to characterize processing parameters. Polypropylene(PP) composites containing randomly oriented long carbon fiber and carbon black were used in this work. The composite materials contained 5%, 10%, 15%, and 20% carbon fiber and 5%, 10%, 15%, 20%, and 25% carbon black by weight. Compression molding was conducted at various mold temperatures. The temperature of the material in the mid-plain was monitored during the forming. Crystallinity was also measured by using XRD. The tensile modulus of the composites increase, with increasing the mold temperature. However, the impact strength of the composites decreases as mold temperature increases.

  • PDF

Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method (압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구)

  • Hwang, Hui-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

A study on the machinability of Carbon Fiber Reinforced Plastics on tool shape (공구형상에 따른 CFRP(Carbon Fiber Reinforced Plastics) 복합재료의 절삭 특성에 관한 연구)

  • Shin, Bong-Cheul;Kim, Kyu-Bok;Ha, Seok-Jae;Cho, Myeong-W
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.799-804
    • /
    • 2011
  • CFRP(Carbon Fiber Reinforced Plastics) has been used many industries aerospace, automobile, medical device and building material industries, etc. Because it is lighter than other metals and has good properties, such as rigidity, strength and wear. CFRP may be cured integrity. However, it needs postprocessing similar to drilling or endmilling for shape cutting and combination of various material. In this paper, tool dynamometer and accelerometer used to signal analysis for machining properties under various cutting conditions and tool shape changes. In addition, microscope used to verify the machined CFRP surface. As the results, it was found that the cutting force and the vibration were decreased in the increasing of cutting edge (2-flute < 4-flute < composite tool), and the good machined surface can be obtained in this experiments.