• 제목/요약/키워드: Carbon Emission Factors

검색결과 211건 처리시간 0.027초

산림탄소상쇄 사업계획서를 이용한 산림탄소 배출권 분석 (Analysis of Forestry Carbon Offset Credits Using Project Design Documents)

  • 박진택;조용성;장진구
    • 한국기후변화학회지
    • /
    • 제7권2호
    • /
    • pp.185-191
    • /
    • 2016
  • Since 2013, the forest carbon offest scheme is operated by 'ACT ON THE MANAGEMENT AND IMPROVEMENT OF CARBON SINK'. Most of projects account for afforestation, reforestation and restoration. This study analyzed what is affected to pricing factors for the registered 71 project of forest carbon offset in Korea Forest Service. The purpose of this study is to introduce information on the business plans of forest carbon offset scheme and aid to understand the process from registration to issuing offset credits. Also it is meaningful to proposing a policy for price competitiveness and how to enable forest carbon offset schemes to produce activation by measuring the factors that affect the forest carbon offset scheme. The results showed forest carbon credit price is 92,827 won per ton on average, it could see less price-competitive than emission rights market when compared with the price.

The path analysis of carbon emission reduction: A case study of the Silk Road Economic Belt

  • Kong, Yang;He, Weijun
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.71-79
    • /
    • 2020
  • This paper uses super-efficiency DEA model and Malmquist index to evaluate the carbon emission efficiency (CEE) values of the nine western provinces along the "Silk Road Economic Belt" for the period from 2000 to 2015, and analyses the influencing factors of the CEE. The major findings of this study are the following: (1) the overall CEE of the nine western provinces is not high, and there are significant inter-provincial differences in the CEE. Meanwhile, the provinces with higher levels of economic development generally have higher CEE. (2) The annual total factor productivity (TFP) of the nine western provinces, which is mainly determined by technological change, is greater than 1. Moreover, the total average growth rate of the TFP is 15.5%. (3) The CEE of the nine western provinces is not spatially dependent. In addition, the urbanization, openness, use of energy-saving technologies and research and development (R&D) investment have a significant positive impact on the CEE values, while the industrial structure, foreign direct investment, fixed asset investment, government expenditure levels and energy structure have a significant negative impact on the CEE. Among them, R&D investment is the primary factor in promoting the development of CEE, and the government expenditure has the greatest negative impact on the CEE.

Analysis of research trends in methane emissions from rice paddies in Korea

  • Choi, Eun-Jung;Lee, Jae-Han;Jeong, Hyun-Cheol;Kim, Su-Hun;Lim, Ji-Sun;Lee, Dong-Kyu;Oh, Taek-Keun
    • 농업과학연구
    • /
    • 제44권4호
    • /
    • pp.463-476
    • /
    • 2017
  • Climate change is considered as the greatest threat to our future and descendants. The Korean government has set a target for 2030 to reduce emission of greenhouse gases (GHGs) by 37% from the business-as-usual levels which are projected to reach 851 million metric tons of $CO_2eq$ (Carbon dioxide equivalent). In Korea, GHGs emission from agriculture account for almost 3.1% of the total of anthropogenic GHGs. The GHGs emitted from agricultural land are largely classified into three types: carbon dioxide ($CO_2$), methane ($CH_4$), and nitrous oxide ($N_2O$). In Korea, rice paddies are one of the largest agricultural $CH_4$ sources. In order to analyze domestic research trends related to $CH_4$ emission from rice paddies, 93 academic publications including peer reviewed journals, books, working papers, reports, etc., published from 1995 to September 2017, were critically reviewed. The results were classified according to the research purposes. $CH_4$ characteristics and assessment were found to account for approximately 65.9% of the research trends, development of $CH_4$ emission factors for 9.5%, $CH_4$ emission reduction technology for 14.8%, and $CH_4$ emission modeling for 6.3%, etc. A number of research related to $CH_4$ emission characteristics and assessment have been studied in recent years, whereas further study on $CH_4$ emission factors are required to determine an accurate country-specific GHG emission from rice paddies. Future research should be directed toward both studies for reducing the release of $CH_4$ from rice paddies to the atmosphere and the understanding of the major controlling factors affecting $CH_4$ emission.

국내 무연탄 화력발전소의 온실가스 배출계수 개발 - CH4, N2O를 중심으로 - (Development of Greenhouse Gas (CH4 and N2O) Emission Factors for Anthracite Fired Power Plants in Korea)

  • 이시형;김진수;이성호;사재환;김기현;전의찬
    • 한국대기환경학회지
    • /
    • 제25권6호
    • /
    • pp.562-570
    • /
    • 2009
  • Although anthracite power plant acts as the important source of greenhouse gas emissions, relatively little is known about its emission potentials. Especially, because the emissions of Non-$CO_2$ greenhouse gas $CH_4$ and $N_2O$ are strongly dependent on fuel type and technology available, it is desirable to obtain the information concerning their emission pattens. In this study, the anthracite power plants in Korea were investigated and the emission gases were analyzed using GC/FID and GC/ECD to develop Non-$CO_2$ emission factors. The anthracite samples were also analyzed to quantity the amount of carbon and hydrogen using an element analyzer, while calorie was measured by an automatic calorie analyzer. The emission factor of $CH_4$ and $N_2O$ computed through the gas analysis corresponded to 0.73 and 1.98 kg/TJ, respectively. Compared with IPCC values, the $CH_4$ emission factor in this study was about 25% lower, while that of $N_2O$ was higher by about 40%. More research is needed to extend our database for emission factors of various energy-consuming facilities in order to stand on a higher position.

승용차의 이산화탄소(CO2) 배출특성에 관한 연구 (A Study on Characteristics of Carbon Dioxide Emissions from Passenger Cars)

  • 유영숙;류정호;전민선;김대욱;정성운;김선문;엄명도;김종춘
    • 한국대기환경학회지
    • /
    • 제22권4호
    • /
    • pp.451-458
    • /
    • 2006
  • Automotive exhaust is suspected to be one of the major reasons of the rapid increase in greenhouse effect gases in ambient air. As the concerns regarding global worming were increased, the pressure on mobile source greenhouse gas (GHG) emission were also increased. Carbon Dioxides contribute over 90% of total GHG emission and the mobile source occupies about 20% of this $CO_2$ emission. In this study, in order to investigate $CO_2$ emission characteristics from gasoline and LPG passenger cars (PC), which is the most dominant vehicle type in Korea, 53 vehicles were tested on the chassis dynamometer. $CO_2$ emissions and fuel consumption efficiency were measured. The emission characteristics by fuel type, model year, mileage, vehicle speed and transmission type were also discussed. Test modes used in this study were NIER 10 modes and CVS-75 mode, which have been used for developing emission factors and testing new vehicles respectively. The results of this study showed that the main factors which have significant influences on the $CO_2$ emissions are fuel type, transmission type, displacement of vehicle and mileage. The correlation between $CO_2$ emission and FE was also determined by comparing $CO_2$ emission and fuel consumption efficiency. The overall results of this study will greatly contribute to domestic greenhouse gas emissions calculation and designing national strategies for climate change.

대나무 탄소계정을 위한 목재기본밀도 개발 (Development of a Basic Wood Density for Carbon Accounting in Bamboo Forests)

  • 배은지;정재엽;이선정;노혜정;손영모
    • 한국산림과학회지
    • /
    • 제112권2호
    • /
    • pp.188-194
    • /
    • 2023
  • 본 연구는 우리나라의 대나무림에 대한 탄소계정을 위하여 탄소배출계수 중 하나인 목재기본밀도를 도출하기 위하여 수행되어 졌다. 대나무는 전라남도와 경상남도에 주로 분포해 있으며, 계수 도출을 위한 표준목은 솜대, 왕대, 맹종죽 등 3수종별로 각각 101본씩을 선정하여 활용하였다. 목재기본밀도 도출은 KS F 2098 방법을 따랐다. 측정결과, 솜대의 목재기본밀도는 0.83 g/cm3, 왕대는 0.81 g/cm3, 맹종죽은 0.72 g/cm3로 각각 나타났다. 그렇지만, 우리나라는 대나무 분포 면적이 많지 않고, 맹종죽의 경우 일정 지역에 국한되어 생육하고 있다. 따라서 대나무에 적용할 수 있는 목재기본밀도는 하나로 통합하여 0.79 g/cm3로 확정하였다. 그리고 도출된 목재기본밀도에 대한 불확도를 평가한 결과, 1.61%로 낮은 불확도 값을 가져, 본 분석에서의 측정값에 대한 신뢰도를 확인할 수 있었다. 본 연구에서는 이번에 개발한 목재기본밀도와 기존의 바이오매스확장계수, 뿌리함량비 등을 이용하여 대나무 표준목에 대한 탄소저장량을 계산하고, 이를 확장시켜 ha단위까지 계산해 보았다. 이번 연구로 대나무의 재적을 이용하여 목재기본밀도 등 탄소배출계수 적용으로 탄소저장 및 흡수량 계산이 가능하게 되었다. 본 결과가 우리나라 탄소중립 정책 및 산림관리 방향에 도움이 되기를 기대한다.

도로 주행 중의 비출력 및 가속도 조건을 반영한 차속별 배출계수 연구 (Speed-Based Emission Factor regarding Vehicle Specific Power and Acceleration during On-road Driving)

  • 이태우;길지훈;박준홍;박용희;홍지형;이대엽
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.73-81
    • /
    • 2011
  • The performance of emission factor has been validated by comparison with on-road test data. Emission factor, which is a function of vehicle speed, has been acquired based on chassis dynamometer test with NIER driving pattern. Portable Emission Measurement System, PEMS has measured on-road emission. Test vehicle was operated on defined test routes under different driving conditions, and made ten trips along its route. Emission factors properly simulate on-road test result, although there is some drawback to consider variety of driving condition on real world. Vehicle specific power and acceleration have been used to explain the distributed on-road result within same vehicle speed range. The trend in carbon dioxide and nitrogen oxide emission with respect to specific power and acceleration is clear. It has been found that specific power is a good explanatory variable for microscopic analysis for modal test result. Acceleration is good for microscopic as well as macroscopic analysis.

국내 휘발유 승용차의 CO2 배출 현황 (A Study on the Characteristics of Carbon Dioxide Emissions from Gasoline Passenger Cars)

  • 유영숙;류정호;정성운;전민선;김대욱;엄명도;김종춘
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.58-64
    • /
    • 2007
  • As the concerns regarding global worming were increased, the pressure of greenhouse gas(GHG) emission reduction on mobile source was also increased. Carbon dioxides contribute over 90% of total GHG emission and the mobile source occupies about 20% of this $CO_2$ emission. Therefore automotive exhaust is suspected to be one of the major reasons of the rapid increase in greenhouse effect gases in ambient air. In this study, in order to investigate $CO_2$ emission characteristics from gasoline passenger cars(PC), which is the most dominant vehicle type in Korea, 106 vehicles were tested on the chassis dynamometer. $CO_2$ emissions and fuel efficiency were measured. The emission characteristics by displacement, gross vehicle weight, vehicle speed and CVS-75/vehicle speed mode were discussed. Test modes were vehicle speed modes and CVS-75 mode that have been used to develop emission factors and to regulate for light-duty vehicle in Korea. It was found that $CO_2$ emissions showed higher large displacement, heavy gross vehicle weight, low vehicle speed and CVS-75 mode than small displacement, light gross vehicle weight, high vehicle speed and vehicle speed mode, respectively. From these results, correlation between $CO_2$ emission and fuel efficiency was also determined. The results of this study will contribute to domestic greenhouse gas emissions calculation and making the national policy for climate change.

철강 산업의 산업공정부문 CO2 실측 배출계수 산정에 관한 연구 (An Estimation of Plant Specific Emission Factors for CO2 in Iron and Steel Industry)

  • 엄윤성;홍지형;김정수;김대곤;이수빈;송형도;이성호
    • 한국대기환경학회지
    • /
    • 제23권1호
    • /
    • pp.50-63
    • /
    • 2007
  • The development of domestic plant specific emission factors is very important to estimate reliable national emissions management. This study, for the reason, was carried out to obtain advances emission factor for Carbon Dioxide ($CO_2$) by source-specific emission tests from the iron and steel industry sector which is well known as one of the major sources of greenhouse gases ($CO_2$). Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$. There was no good information available on $CO_2$ plant specific emission factors from the iron and steel industry in Korea so far. The major emission sources of $CO_2$ examined from the iron and steel manufacturing precesses were a hot blast stove, coke oven, sintering furnace, electric arc furnace, heating furnace, and so on. In this study, the concentration of $CO_2$ from the hot blast stove process was the highest among all processes. The $CO_2$ emission factors for a ton of Steel and Iron products (using B-C oil) were estimated to be 0.315 $CO_2$ tonne (by Tier 3 method) and 4.89 $CO_2$ tonne. In addition, emission factor of $CO_2$ for heating furnace process was the highest among all process. Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$.

강원도 산림의 임상별, 수종별 탄소저장량 및 온실가스 흡수량 산정 (Estimation of the Carbon Stock and Greenhouse Gas Removals by Tree Species and Forest Types in Gangwon Province)

  • 이선정;임종수;손영모;김래현
    • 한국기후변화학회지
    • /
    • 제6권4호
    • /
    • pp.303-310
    • /
    • 2015
  • This study was conducted to estimate of carbon stock and greenhouse gas (GHGs) removals by tree species and forest type at Gangwon province. We used a point sampling data with permanent sample plots in national forest inventory and national emission factors. GHGs emissions was caclulated using the stock change method related to K-MRV and IPCC guidance. Total carbon stock and greenhouse gas removals were high in deciduous forest and species than in coniferous. The range of annual net greenhouse gas emissions in other deciduous species was from $-11,564.83Gg\;CO_2\;yr^{-1}$ to $-13,500.60Gg\;CO_2\;yr^{-1}$ during 3 years (2011~2013). On the other hand, coniferous forest was temporally converted to source due to reducing of growing stock in 2012. It was that growing stocks and forest area were likely to reduce by the deforestation and clear cutting. This study did not consider other carbon pools (soil and dead organic matter) due to the lack of data. This study needs to complement the activity data and emission factors, and then will find the way to calculate the greenhouse gas emissions and removals in the near future.