• Title/Summary/Keyword: Carbon Emission Analysis

Search Result 556, Processing Time 0.024 seconds

Is It Possible to Achieve IMO Carbon Emission Reduction Targets at the Current Pace of Technological Progress?

  • Choi, Gun-Woo;Yun, Heesung;Hwang, Soo-Jin
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.113-125
    • /
    • 2022
  • Purpose - The primary purpose of this study is to verify whether the target set out by the International Maritime Organization (IMO) for reducing carbon emissions from ships can be achieved by quantitatively analyzing the trends in technological advances of fuel oil consumption in the container shipping market. To achieve this purpose, several scenarios are designed considering various options such as eco-friendly fuels, low-speed operation, and the growth in ship size. Design/methodology - The vessel size and speed used in prior studies are utilized to estimate the fuel oil consumption of container ships and the pace of technological progress and Energy Efficiency Design Index (EEDI) regulations are added. A database of 5,260 container ships, as of 2019, is used for multiple linear regression and quantile regression analyses. Findings - The fuel oil consumption of vessels is predominantly affected by their speed, followed by their size, and the annual technological progress is estimated to be 0.57%. As the quantile increases, the influence of ship size and pace of technological progress increases, while the influence of speed and coefficient of EEDI variables decreases. Originality/value - The conservative estimation of carbon emission drawn by a quantitative analysis of the technological progress concerning the fuel efficiency of container vessels shows that it is not possible to achieve IMO targets. Therefore, innovative efforts beyond the current scope of technological progress are required.

Speed-Based Emission Factor regarding Vehicle Specific Power and Acceleration during On-road Driving (도로 주행 중의 비출력 및 가속도 조건을 반영한 차속별 배출계수 연구)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Jun-Hong;Park, Yong-Hee;Hong, Ji-Hyung;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.73-81
    • /
    • 2011
  • The performance of emission factor has been validated by comparison with on-road test data. Emission factor, which is a function of vehicle speed, has been acquired based on chassis dynamometer test with NIER driving pattern. Portable Emission Measurement System, PEMS has measured on-road emission. Test vehicle was operated on defined test routes under different driving conditions, and made ten trips along its route. Emission factors properly simulate on-road test result, although there is some drawback to consider variety of driving condition on real world. Vehicle specific power and acceleration have been used to explain the distributed on-road result within same vehicle speed range. The trend in carbon dioxide and nitrogen oxide emission with respect to specific power and acceleration is clear. It has been found that specific power is a good explanatory variable for microscopic analysis for modal test result. Acceleration is good for microscopic as well as macroscopic analysis.

Analysis of the Influence of Foreign Direct Investment on Carbon Emissions: Analysis Using Panel VAR Model (외국인투자가 탄소배출량에 미치는 영향분석: 패널 VAR 모형을 이용한 분석)

  • Ryoo, Sung-Woo;Lee, Yang-Kee;Kim, Neung-Woo
    • Korea Trade Review
    • /
    • v.44 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • The purpose of this study is to investigate the relationship between foreign investment and carbon emissions in the Korean electricity sector, the causal relationship between the foreign investment invested in the electric power sector in the 16 regional regions and the carbon emissions in the region, The purpose of this study is to analyze the effects of foreign investment on these sectors and the carbon footprint of these sectors using Panel Random Effect Analysis, Panel VAR and OLS models. A panel analysis of foreign investment and regional carbon emissions showed that there was a causal relationship. Based on this analysis, OLS analysis showed that 7 out of 16 metropolitan areas were foreign investment And carbon emissions were significant. In the remaining six regions except Gwangju, there was a causal relationship between foreign investment in the local power sector and the reduction of carbon emissions. After categorizing the electric power industry by device, process, purpose and number of employees, causality also appeared in relation to foreign investment in these sectors and their carbon emissions. Through this study, the authors suggest that foreign investment can be a way to solve not only the financial burden of carbon emission problem, but also the development of national economy and industry through the inflow of capital and advanced new technology.

Interrelations between Greenhouse Gas (GHG) Emission and Total Floor Area of Buildings -With the Case Study of Public Facilities in Ontario, Canada-

  • Son, Juntae;Chang, Seongju
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.95-99
    • /
    • 2017
  • Recently, it is becoming increasingly difficult to ignore carbon emission implication of building operations due to the significant rate of energy usage in buildings. In the building sector, our normal expectation implies that large building floor area induces more greenhouse gas (GHG) emission. In this research, the correlation between building total floor areas and GHG emission was explored by simple linear regression and analyzing the yielded residuals for confirming this seemingly obvious conjecture. By looking at the generated regression lines drawn based on the data sets representing public facilities in Ontario, Canada, we were able to confirm that carbon emission rate shows a proportional increase or decrease depending on the total floor area of buildings as has been implied as a conjecture. Some buildings were found to emit significantly large and small amount of GHG, and we addressed potential reasons why those buildings show the deviation from the confirmed proportional interrelation between a building's total floor area and the amount of GHG emission.

Does High-Speed Rail Have Superiority over Motorway in Terms of CO2 Emission? (고속철도는 고속도로에 비하여 저탄소 친환경적인가?)

  • Kang, Taeseok;Chang, Hyunho
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.83-93
    • /
    • 2016
  • PURPOSES : The aim of this article is to compare and identify eco-friendly competitiveness between (regional) motorway and high-speed rail(HSR) from the perspective of $CO_2$ emission in the Republic of Korea. METHODS : In order for an analysis of low-carbon competitiveness between the two modes, $CO_2e$ emission, $CO_2eppk$ (equivalent $CO_2$ gram per passenger kilometer), is employed as a comparison index. As for HSR, the index is calculated based on the passenger transport data and the gross of $CO_2e$ produced by Kyungbu high-speed line in 2013. Additionally, the gross of $CO_2e$ is computed by the greenhouse gas emission factors of domestic electricity generation mix. Regarding the index of motorway, it is directly calculated using both the official $CO_2e$ emission factor and the passenger-car occupancy of motorway. RESULTS : The results revealed, in the case of inter-regional transport, that the $CO_2e$ emission of displacement-based cars is 54.9% less than that of HSR, as the domestic electric power systems heavily relies on the thermal power plants over 66%. Note that internal combustion engines commonly used for vehicles are more energy-efficient than steam-driven turbines usually utilized for thermal power generation. CONCLUSIONS : It can be seen, at the very least in our study, that HSR has no superiority over motorway in the case of $CO_2e$ emission under the situations of domestic electricity generation mix. In addition, advanced eco-friendly vehicles have strong advantages over HSR. Therefore, all-out efforts should be made to develop and harvest renewable energy sources in order to achieve low-carbon HSR, sparing fossil fuels.

Development of CO2 Emission Factor by Fuel and CO2 analysis at Sub-bituminous Fired Power Plant (연료와 CO2 농도분석을 이용한 아역청탄 화력발전소의 온실가스 배출계수 개발)

  • Jeon, Eui-Chan;Sa, Jae-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.128-135
    • /
    • 2010
  • The main purpose of this study was to develop the greenhouse gas emission factor for power plant using sub-bituminous coal. In Korea, Fired power plant are a major source of greenhouse gases within the fossil fuel combustion sectors, thus the development of emission factors is necessary to understand the characteristics of the national specific greenhouse gas emission and to develop nation specific emission factors. These emission factors were derived from the $CO_2$ concentrations measurement from stack and fuel analysis of sub-bituminous coal. Caloric value of sub-bituminous coal used in the power plants were 5,264 (as received basis), 5,936 (air-dried basis) and 6,575 kcal/kg (dry basis). The C emission factors by fuel analysis and $CO_2$ concentration measurement was estimated to be 26.7(${\pm}0.9$), 26.3(${\pm}2.8$)tC/MJ, respectively. Our estimates of C emission factors were comparable with IPCC default value.

A Research on the Greenhouse Gas Emission Reduction of Railway Structure Construction Stage (건설단계에서의 철도시설물 온실가스저감방안연구)

  • Lee, Cheul-Kyu;Kim, Jong-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.425-432
    • /
    • 2011
  • Concrete was identified as the significant GHG emission source resulting from a GHG emission analysis of railway infrastructure. An environmental assessment method (life cycle assessment; LCA) and low carbon railway infrastructure design strategy development method (ECODESISGN PILOT) were applied to develop low carbon railway infrastructure design strategies. The railway infrastructure was analyzed as a raw material intensive industry emitting large amount of greenhouse gas (GHG) at its construction stage. Therefore, in this study, it is analyzed that current status of GHG emission at its construction stage, and a method reducing GHG emission of railway infrastructure is proposed. In this study, eco-concrete, concrete aging prevention agent and a low carbon railway route decision method based on a need of low carbon railway infrastructure construction technology application for green railway development were considered.

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

Implementing Activity-based LCA Model for Carbon Dioxide Emission Analysis and Allocation of Environment Cost (세부 공정별 CO2 배출 분석 및 환경비용 원가배분을 위한 Activity-based LCA 모델의 도입 - 커튼월 공사를 중심으로 -)

  • Lim, Ji-Youn;Yi, June-Seong;Shin, Seung-Woo;Son, Jeong-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.78-88
    • /
    • 2012
  • As worldwide efforts to reduce global warming gases, the construction Industry is endeavoring to diminish carbon dioxides emissions. Especially, by introducing the LCA methodology to the industry, A variety of related studies to measure the emission of carbon dioxides have been conducted. However, when the conventional LCA methodology is applied to the construction projects, some limitations have been reported. To overcome the restrictions derived from the industry characteristics, this research suggested the Activity-based LCA model by applying the Activity-based Costing (ABC), which breaks down the whole life cycles into more detailed stages. By implementing the newly developed model, forecasting accuracy of $CO_2$ emission was elevated, and the critical control points on carbon dioxides were established. Through the case study of aluminium curtain-wall system, this research verified the usefulness of the Activity-based LCA.