• 제목/요약/키워드: Carbon Electrode Perovskite

검색결과 13건 처리시간 0.03초

Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell

  • Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.595-600
    • /
    • 2020
  • The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 ℃, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.

열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화 (Properties of the carbon electrode perovskite solar cells with various annealing processes)

  • 송오성;김광배
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.26-32
    • /
    • 2021
  • 카본 전극 페로브스카이트 태양전지의 광활성층을 형성하는데 열판, 오븐, 쾌속열처리로 방법을 달리하며 이때 광전기적 특성과 미세구조 변화를 확인하였다. Glass/FTO/compact TiO2/meso TiO2/meso ZrO2/perovskite/carbon electrode 구조의 페로브스카이트 태양전지 소자를 열판 공정, 오븐 공정, RTA(rapid thermal annealing) 공정을 이용하여 준비하였다. 이때 광전기적 특성과 미세구조를 solar simulator와 광학현미경, 장발산주사전자현미경을 이용하여 각 소자의 특성을 분석하였다. 광전기적 특성 분석 결과, RTA 공정을 이용하여 제작한 소자에서 가장 우수한 광전기적 특성을 확인할 수 있었다. 미세구조 분석 결과 열판 공정과 오븐 공정으로 제작한 시편은 카본 전극 상부에 과잉 페로브스카이트 상이 형성되고, RTA 공정으로 제작한 시편에서는 시편 상부에 과잉 페로브스카이트 상 없이, 균일한 페로브스카이트가 형성된 것을 확인할 수 있었다. 또한 단면 미세구조에서는 RTA 공정으로 제작한 소자가 다공성 카본 전극 층에 고밀도의 페로브스카이트 층을 형성하여 우수한 광전기적 특성을 나타내었다. 따라서 대면적 소자 제작의 공정시간을 고려한 새로운 열처리방안으로 RTA 방법의 채용 가능성을 확인하였다.

페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극에서 이산화탄소의 전해환원에 의한 알콜류 생성 (Carbon Dioxide Reduction to Alcoholson Perovskite-Type $La_{0.9}$$Sr_{0.1}$$CuO_3$ Electrodes)

  • 김태근;임준혁
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.677-682
    • /
    • 1996
  • 페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극을 이용하여 이산화탄소를 메탄올, 에탄올등의 알콜류와 아세트 알데히드로 전해환원하였다. 전해환원 실험은 전류밀도 100mA/c$m^2$ 그리고 환원 전위 -2 to -2.5 V vs. Ag/AgCl에서 수행하였다. 실험결과 메탄올은 11.6%, 에탄올은 15.3% 그리고 아세트알데히드는 6.2 %의 최고효율을 나타내었다. 따라서 페로브스카이트 전극은 알콜생성 면에서 기타 다른 금속전극에 비하여 매우 우수한 효과를 보여주었다.

  • PDF

탄소전극 기반 페로브스카이트 태양전지 적용을 위한 조밀 이산화티타늄 분말 전자수송층 제작 비교 연구 (Comparison Study of Compact Titanium Oxide (c-TiO2) Powder Electron Transport Layer Fabrication for Carbon Electrode-based Perovskite Solar Cells)

  • 우채영;이형우
    • 한국분말재료학회지
    • /
    • 제29권4호
    • /
    • pp.297-302
    • /
    • 2022
  • This study compares the characteristics of a compact TiO2 (c-TiO2) powdery film, which is used as the electron transport layer (ETL) of perovskite solar cells, based on the manufacturing method. Additionally, its efficiency is measured by applying it to a carbon electrode solar cell. Spin-coating and spray methods are compared, and spray-based c-TiO2 exhibits superior optical properties. Furthermore, surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibits the excellent surface properties of spray-based TiO2. The photoelectric conversion efficiency (PCE) is 14.31% when applied to planar perovskite solar cells based on metal electrodes. Finally, carbon nanotube (CNT) film electrode-based solar cells exhibits a 76% PCE compared with that of metal electrode-based solar cells, providing the possibility of commercialization.

반투명 페로브스카이트 태양전지용 투명전극 소재 (Transparent Electrodes for Semitransparent Perovskite Solar Cells)

  • 이필립;고민재
    • Current Photovoltaic Research
    • /
    • 제6권3호
    • /
    • pp.74-80
    • /
    • 2018
  • Recently, perovskite solar cells have shown tremendous improvement in power conversion efficiencies. Moreover, they have potential in semitransparent solar cell applications due to their high absorption coefficients. In order to fabricate semitransparent perovskite solar cells with good performance, it is essential to consider the suitability of transparent electrode materials in various aspects, such as transparency, conductivity and fabrication process. In this review, candidate materials for transparent electrodes in perovskite solar cells including carbon-based nanomaterials, conductive polymers and metallic nanostructures are discussed.

Properties of Carbon Pastes Prepared with Mixing Ratios of Nano Carbon and Graphite Flakes

  • Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.615-619
    • /
    • 2018
  • To produce carbon electrodes for use in perovskite solar cells, electrode samples are prepared by mixing various weight ratios of 35 nm nano carbon(NC) and $1{\mu}m$ graphite flakes(GF), GF/(NC+GF) = 0, 0.5, 0.7, and 1, in chlorobenzene(CB) solvent with a $ZrO_2$ binder. The carbon electrodes are fabricated as glass/FTO/carbon electrode devices for microstructure characterization using transmission electron microscopy, optical microscopy, and a field emission scanning electron microscopy. The electrical characterization is performed with a four-point probe and a multi tester. The microstructure characterization shows that an electrode with excellent attachment to the substrate and no surface cracks at weight ratios above 0.5. The electrical characterization results show that the sheet resistance is <$70{\Omega}/sq$ and the interface resistance is <$70{\Omega}$ at weight ratios of 0.5 and 0.7. Therefore, a carbon paste electrode with microstructure and electrical properties similar to those of commercial carbon electrodes is proposed with an appropriate mixing ratio of NC and GF containing a CB solvent and $ZrO_2$.

Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity

  • Islam, Mobinul;Jeong, Min-Gi;Ghani, Faizan;Jung, Hun-Gi
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권4호
    • /
    • pp.121-130
    • /
    • 2015
  • The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.

알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응 (Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell)

  • 심중표;박용석;이홍기;박수길;이주성
    • 공업화학
    • /
    • 제7권5호
    • /
    • pp.992-998
    • /
    • 1996
  • Citrate process로 제조한 $La_{1-x}Ca_xCoO_3$에서 Ca이 20mole% doping된 perovskite oxide가 산소환원반응에 대해 가장 높은 전류밀도와 specific activity를 보여주었으며 cyclic voltammogram에서 carbon만으로 제조된 전극에서보다 carbon과 Perovskite oxide를 혼합한 전극에서 높은 산소흡착/탈착전류를 보였다. 입자크기분포와 소결효과에 의해 $900^{\circ}C$, 5시간 공기중에서 소결한 $La_{0.8}Ca_{0.2}CoO_3$가 산소환원반응에 대한 전기화학적 촉매특성이 우수하였다.

  • PDF

알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향 (Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution)

  • 심중표;로페즈 카린;양진현;선호정;박경세;엄승욱;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)

  • Ishihara, Tatsumi
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.469-477
    • /
    • 2016
  • The application of nanomaterials for electrodes of intermediate temperature solid oxide fuel cells (SOFC) is introduced. In conventional SOFCs, the operating temperature is higher than 1073 K, and so application of nanomaterials is not suitable because of the high degradation rate that results from sintering, aggregation, or reactions. However, by allowing a decrease of the operating temperature, nanomaterials are attracting much interest. In this review, nanocomposite films with columnar morphology, called double columnar or vertically aligned nanocomposites and prepared by pulsed laser ablation method, are introduced. For anodes, metal nano particles prepared by exsolution from perovskite lattice are also applied. By using dissolution and exsolution into and from the perovskite matrix, performed by changing $P_{O2}$ in the gas phase at each interval, recovery of the power density can be achieved by keeping the metal particle size small. Therefore, it is expected that the application of nanomaterials will become more popular in future SOFC development.