• Title/Summary/Keyword: Carbon Dioxide Emissions

Search Result 453, Processing Time 0.026 seconds

A Study on the CO2 Balance Evaluation of Building and Civil Engineering Structures (건축 및 토목 구조물의 CO2 수지 평가에 관한 연구)

  • Cho, Hyeong-Kyu;Song, Hun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.121-122
    • /
    • 2011
  • Globally about 40% of total carbon dioxide emissions occupies from the construction industry. Therefore, it is important to quantitatively calculate carbon dioxide emission of concrete prior to the reduction of carbon dioxide. ddd In addition, it is also important to quantitatively calculate carbon dioxide absorption of concrete because concrete absorbs in a measure of carbon dioxide. In this study, it carried out carbon dioxide balance evaluation of building and civil engineering structures through carbon dioxide balance evaluation method of concrete. Consequently absorption rate compared with carbon dioxide emission is about 2.5~5.18%.

  • PDF

Development of a BIM-based Carbon Dioxide Emission Estimation System -Focus on an Apartment in Korea-

  • Lee, Yong-Ju;Jun, Han-Jong
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.145-149
    • /
    • 2016
  • Recently, a goal was set globally to reduce the Carbon Dioxide ($CO_2$) emission at national levels by 30 % in comparison to the Business As Usual (BAU) pursuant to the United Nations Framework Convention on Climate Change. As construction industry accounts for as high as 40 % of the $CO_2$ emission by the entire industrial sector in Korea, efforts toward reducing emissions from the construction industry are essential. Buildings are mainly responsible for $CO_2$ emissions, and, to reduce the $CO_2$ emitted from the buildings, a fast and accurate calculation method is required to be introduced in the architectural design phase. If the standardized data based on Building Information Modelling (BIM) is utilized, $CO_2$ emissions can be calculated quickly and accurately during the design phase. However, it is difficult for the designers who lack the knowledge regarding $CO_2$ emissions to reduce and manage such emission during the planning and design phases of buildings by estimating the quantities of various materials and the corresponding $CO_2$ emissions. Accordingly, the objective of this study is to develop a BIM-based $CO_2$ emission estimation system for a rapid and objective analysis and verification of $CO_2$ emissions.

An Analysis of Food Miles and CO2 Emission of Major Agricultural Products (국내 주요 농산물의 푸드마일리지와 이산화탄소 배출량 분석)

  • Suh, Koo-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.706-713
    • /
    • 2012
  • Global warming caused by greenhouse gases is threatening our ecosystem. Moreover, our food system is in severe danger. Recently the local food system is emerging as an alternative food network, decreasing food miles and carbon dioxide emissions, protecting the safety of our foods, and helping local economy. However, carbon labelling for agricultural products has not been introduced yet in Korea. Accordingly, research on food miles and carbon labelling for agricultural products should be urgently conducted. The study compared the food miles and the carbon dioxide emission of major agricultural products. In addition, the food mileages of garlic and carrot are compared between Korea and China. The results show that radish has the highest carbon dioxide emission, and followed by onion and cabbage. These products are produced from Jeju island and have a high Shipment volume. Although Chinese Garlic and radish have lower shipping volume and food miles than Koreans, they have higher carbon dioxide emissions due to ship transportation. Based on these results some valuable implications can be identified. Current food distribution system, which heavily focuses on the Metropolitan area, should be changed into a local system, in which foods are consumed in the local area first then transported to other area.

Impact of Energy Consumption, FDI and Trade Openness on Carbon Emissions in lvory Coast

  • Ange Aurore KADI;Liang LI;David Dauda LANSANA;Joseph FUSEINI
    • Asian Journal of Business Environment
    • /
    • v.14 no.3
    • /
    • pp.23-35
    • /
    • 2024
  • Purpose: The study focuses on the impact of Foreign Direct Investment (FDI), trade openness, and energy consumption on carbon dioxide emissions in the Ivory Coast. It aims to quantitatively evaluate the effects of FDI, energy consumption, and trade openness on CO2 emissions in Ivory Coast. Research design, data, and methodology: The research uses an econometric framework and the Autoregressive Distributed Lag (ARDL) model to analyze time-series data from 1980 to 2021 between these factors. Results: The analysis revealed that FDI significantly impacts the carbon dioxide emissions, FDI showed a negative impact on carbon emissions in the long-run equilibrium term. Also, energy consumption impacted CO2 emissions in the long-run equilibrium term. Conclusion: To mitigate the upsurge of CO2 emissions in the Ivorian context, concrete policy, including enactment and adherence to strict environmental regulations, adoption and prioritization of eco-friendly products and technologies, and investment in renewable energy infrastructure are recommended. The study contributes to the global discussion on sustainable development by offering a model for similar assessments in other emerging nations facing simultaneous economic growth and environmental conservation challenges.

Minimizing environmental impact from optimized sizing of reinforced concrete elements

  • Santoro, Jair F.;Kripka, Moacir
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The construction field must always explore sustainable ways of using its raw materials. Studying the environmental impact generated by reinforced concrete raw materials during their production and transportation can contribute to reducing this impact. This paper initially presents the carbon dioxide emissions from reinforced concrete raw materials, quantified per kilo of raw material and per cubic meter of concrete with different characteristic strengths, for southern Brazil. Subsequently, reinforced concrete elements were optimized to minimize their environmental impact and cost. It was observed that lower values of carbon dioxide emissions and cost savings are generated for less resistant concrete when the structural element is a beam, and that reductions in the cross section dimensions of the beams, sized based on the use of higher strength concrete, may not compensate for the increased environmental impact and costs. For the columns, the behavior differed, presenting lower values of carbon dioxide emissions and costs for higher concrete strengths. The proposed methodology, as well as the results obtained, can be used to support structural projects that have less impact on the environment.

Interfuel Substitution and Carbon Dioxide Emission in the Transportation Sector: Roles of Biodiesel Blended Fuels (수송부문의 연료 간 대체와 이산화탄소 배출: 바이오디젤 혼소 효과를 중심으로)

  • Hyonyong Kang;Dong Hee Suh
    • Environmental and Resource Economics Review
    • /
    • v.32 no.1
    • /
    • pp.27-46
    • /
    • 2023
  • This paper investigates how interfuel substitution affects carbon dioxide (CO2) emissions with a focus on the use of biodiesel blended fuels. The results show that the Divisia elasticity of diesel demand is the greatest because the transportation sector relies heavily on diesel. Also, while the own-price elasticity of each fuel demand is negative, the results reveal that diesel demand is more inelastic than the demand for gasoline and LPG. Moreover, gasoline is a substitute for diesel and electricity, and diesel is a substitute for LPG and a complement for electricity. Regarding the effects on carbon dioxide emissions, this paper computes the potential CO2 emissions associated with interfuel substitution using the coefficients of CO2 emissions. The results show that using biodiesel blended fuels contributes to reducing CO2 emissions, but it appears that the price-induced interfuel substitution is a main factor affecting CO2 emissions.

A study on the functional restructuring of the security system for the reduction of the amount of carbon dioxide (탄소량 감축을 위한 보안 시스템의 기능적 구조 개선에 관한 연구)

  • Jeon, Jeong Hoon
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the problem of global warming has become a globally important issues. and To solve these problems, has been receiving increasing attention for the Green IT. In these situation, IT techniques are evolving with variety services and hacking techniques. so, it is inevitable to the use of a many and diverse secure system. As a result, Carbon Dioxide emissions are expected to increase. Therefore, in this paper is analyzed the factors of security system's $CO_2$ emissions through Experiments and A case study. and is proved that is reducing $CO_2$ emissions by improving the functional restructuring of the security system. In a future, this paper is expected to serve as a valuable Information for security network design and performance improvements and to reduce Carbon Emissions in the Field of IT.

Projection of Circum-Arctic Features Under Climate Change (미래 기후 변화 시나리오에 따른 환북극의 변화)

  • Lee, Ji Yeon;Cho, Mee-Hyun;Koh, Youngdae;Kim, Baek-Min;Jeong, Jee-Hoon
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.393-402
    • /
    • 2018
  • This study investigated future changes in the Arctic permafrost features and related biogeochemical alterations under global warming. The Community Land Model (CLM) with biogeochemistry (BGC) was run for the period 2005 to 2099 with projected future climate based on the Special Report on Emissions Scenarios (SRES) A2 scenario. Under global warming, over the Arctic land except for the permafrost region, the rise in soil temperature led to an increase in soil liquid and decrease in soil ice. Also, the Arctic ground obtained carbon dioxide from the atmosphere due to the increase in photosynthesis of vegetation. On the other hand, over the permafrost region, the microbial respiration was increased due to thawing permafrost, resulting in increased carbon dioxide emissions. Methane emissions associated with total water storage have increased over most of Arctic land, especially in the permafrost region. Methane releases were predicted to be greatly increased especially near the rivers and lakes associated with an increased chance of flooding. In conclusion, at the end of $21^{st}$ century, except for permafrost region, the Arctic ground is projected to be the sink of carbon dioxide, and only permafrost region the source of carbon dioxide. This study suggests that thawing permafrost can further to accelerate global warming significantly.

Nitrogen Oxides Adsorbing Capacity of High Carbon Fly Ash Containing Cementitious Materials (탄소함량이 높은 플라이애쉬를 함유한 시멘트 페이스트의 질소산화물 흡착 성능)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.37-42
    • /
    • 2018
  • The use of fly ash in construction materials is increasing worldwide due the various advantages of using it, such as to produce durable concrete, or to use less cement and thus lower carbon dioxide emissions. The quality of fly ash is often determined by loss on ignition value (LOI), where an upper limit of LOI is set in each country for quality control purpose. However, due to many reasons, production of high LOI fly ash is increasing that cannot be utilized in concrete, ending up in landfill. In this study, the effect of fly ash use in cementitious materials on nitrogen oxides adsorption is examined. In particular, the effect of using high LOI, and thus high carbon content fly ash on nitrogen oxides adsorption is investigated. The results suggest that the higher carbon content fly ash is related to higher nitrogen dioxide adsorption, although normal fly ash was also more effective in nitrogen dioxide adsorption than ordinary portland cement. Also, higher replacement rate of up to 40% of fly ash is beneficial for nitrogen dioxide adsorption. These results demonstrate that high carbon fly ash can be used as construction materials in an environmentally friendly way where strength requirement is low and where nitrogen oxides emissions are high.

A Prediction Model of CO2 Emissions for Construction Equipment Using Curve Fitting (Curve Fitting을 이용한 건설장비 CO2 배출량 예측 모델)

  • Noh, Jaeyun;Kim, Yujin;Lee, Jiyeon;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.107-108
    • /
    • 2020
  • The severity of the global climate crisis is increasing due to greenhouse gases caused by human activities. As a result, countries and industries are making efforts to reduce carbon dioxide emissions, the biggest cause of global warming. Many studies have been conducted to predict carbon emissions in the construction sector to reduce this, but they have not actually produced a highly usable formula in the field. Therefore, the two variables 'Curve Fitting' were performed based on the data of excavators and trucks measured at the field. As a result, we have obtained a carbon dioxide emission prediction model for construction equipment, and we would like to use it to help establish an eco-friendly process plan.

  • PDF