• Title/Summary/Keyword: Carbon Arc

Search Result 288, Processing Time 0.031 seconds

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

EPR Studies of the Active Sites of Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum

  • Shin, Woonsup;Lindahl, Paul A.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.869-876
    • /
    • 1995
  • The active sites of the nickel and iron-containing enzyme, carbon monoxide dehydrogenase (CODH) from clostridium thermoaceticum were investigated using Electron Paramagnetic Resonance (EPR) technique. CODH exhibits several spectral features called NiFeC, $g_{ave}=1.82$, $g_{ave}=1.86$. FCII signals which are originated from different clusters in this enzyme. CODH is know to catalyze two different kinds of reactions - acetyl-CoA synthesis and CO oxidation. The acetyl-CoA synthesis activity can be followed by monitoring CO/acetyl-CoA exchange. The addition of 1,10-phenanthroline (phen) to CODH selectively destroyed the CO/acetyl-CoA exchange activity and eliminated the NiFeC signal completely. CO oxidation activity and other EPR signals were unaffected. Such behavior demonstrates that CODH has two distinct active sites and that the NiFe complex is only responsible for the CO/acctyl-CoA exchange activity. Phen caused the removal of only 30% of Ni in the NiFe complex ($0.3Ni/{\alpha}{\beta}$) as shown by the quantitative metal analysis. The phen-treated CODH could be reactivated fully by incubation In $Ni^{2+}$ solution. Radioactive $^{63}Ni^{2+}$ was used to quantitate the amount of the $Ni^{2+}$ incorporated into phen-treated enzyme and showed that the amount was the same as the removed by the phen treatment. i.e. $0.3Ni/{\alpha}{\beta}$. This indicates that only 30% of NiFe complexes are labile and responsible for the CO/acctyl-CoA exchange activity, the other 70% are non-labile and have no exchange activity. This is the first clear evidence that the NiFe complex is heterogencous and labile and non-labile Ni sites arc interacting differently with substrates and chelating agents like phen.

  • PDF

A Study of Characteristics on the Dissimilar Metals (Alloy steel : A387 Gr. 91 - Carbon Steel : A516 Gr. 70) Welds Made with FCA Multiple Layer Welding: Part 2 (합금강(ASTM A387 Gr. 91) - 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성 평가 : Part. 2)

  • Shin, Tae Woo;Hyun, Jun Hyeok;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.68-74
    • /
    • 2017
  • Characteristics of dissimilar metal welds between alloy steel ASTM A387 Gr. 91 and carbon steel ASTM A516 Gr.70 made with Flux cored arc welding(FCAW) have been evaluated in terms of microstructure, mechanical strength, chemical analysis by EDS as well as corrosion test. Three heat inputs of 15.0, 22.5, 30.0kJ/cm were employed to make joints of dissimilar metals with E71T-1C wire. Post-weld heat treatment was carried out at $750^{\circ}C$ for 2.5 h. Based on microstructural examination, Intragranular polygonal ferrite and grainboundary ferrite were formed only in first layer of weld metal. Another layers consisted of acicular ferrite and $Widmannst{\ddot{a}}tten$ ferrite. The amount of acicular ferrite was increased with decreasing heat input and layer. Heat affected zone of alloy steel showed the highest hardness due to the formation of tempered martensite and lower bainite. Lower and upper bainite were formed in heat affected zone of carbon steel. Tensile strengths of dissimilar metal welds decreased with increasing heat inputs. Dissimilar metal welds showed a good hot cracking resistance due to the low HCS index below 4. The salt spray test of dissimilar metals welds showed that the weight loss rate by corrosion below 170 hours was decreased with increasing heat inputs due to the increase of the amount of acicular ferrite.

Actions to Expand the Use of Geospatial Data and Satellite Imagery for Improved Estimation of Carbon Sinks in the LULUCF Sector

  • Ji-Ae Jung;Yoonrang Cho;Sunmin Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.203-217
    • /
    • 2024
  • The Land Use, Land-Use Change and Forestry (LULUCF) sector of the National Greenhouse Gas Inventory is crucial for obtaining data on carbon sinks, necessitating accurate estimations. This study analyzes cases of countries applying the LULUCF sector at the Tier 3 level to propose enhanced methodologies for carbon sink estimation. In nations like Japan and Western Europe, satellite spatial information such as SPOT, Landsat, and Light Detection and Ranging (LiDAR)is used alongside national statistical data to estimate LULUCF. However, in Korea, the lack of land use change data and the absence of integrated management by category, measurement is predominantly conducted at the Tier 1 level, except for certain forest areas. In this study, Space-borne LiDAR Global Ecosystem Dynamics Investigation (GEDI) was used to calculate forest canopy heights based on Relative Height 100 (RH100) in the cities of Icheon, Gwangju, and Yeoju in Gyeonggi Province, Korea. These canopy heights were compared with the 1:5,000 scale forest maps used for the National Inventory Report in Korea. The GEDI data showed a maximum canopy height of 29.44 meters (m) in Gwangju, contrasting with the forest type maps that reported heights up to 34 m in Gwangju and parts of Icheon, and a minimum of 2 m in Icheon. Additionally, this study utilized Ordinary Least Squares(OLS)regression analysis to compare GEDI RH100 data with forest stand heights at the eup-myeon-dong level using ArcGIS, revealing Standard Deviations (SDs)ranging from -1.4 to 2.5, indicating significant regional variability. Areas where forest stand heights were higher than GEDI measurements showed greater variability, whereas locations with lower tree heights from forest type maps demonstrated lower SDs. The discrepancies between GEDI and actual measurements suggest the potential for improving height estimations through the application of high-resolution remote sensing techniques. To enhance future assessments of forest biomass and carbon storage at the Tier 3 level, high-resolution, reliable data are essential. These findings underscore the urgent need for integrating high-resolution, spatially explicit LiDAR data to enhance the accuracy of carbon sink calculations in Korea.

Optimization of Friction Welding for Crank Shaft Steels and Its Real Time AE Evaluation (크랭크 샤프트강재의 마찰용접 최적화와 AE 실시간 평가)

  • Oh, Sae-Kyoo;Choi, Hei-Young;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.98-104
    • /
    • 1999
  • The crank shafts need anti-corrosion materials. So STS 304 is the essential material to manufacture this shaft. However, it costs more to manufacture the shafts by using only STS 304 than welding of STS 304 to other carbon steels. And it has been difficult to weld this sort of dissimilar materials. They could be unstable in the quality by the conventional arc welding. And also they have a lot of technical problems in manufacturing. But by the friction welding technique, it will be able to be made without such problems. Then, this study aimed not only to develop the optimization of dissimilar friction welding of crank shafts steels of STS 304, SM35C, but also to develop the application technique of the acoustic emission to accomplish in-process real-time quality(such as tensile) evaluation during friction welding of the shafts by the AE technique.

  • PDF

A Study on the Coated Characteristics of Ceramic Tools (세라믹공구 재료의 피복특성에 관한 연구)

  • Lee, Myeong-Je;Im, Hong-Seop;Yu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.900-906
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc. Ceramic tools are likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ceramic tools are suitable for continuous in turning, not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

A Study for Cutting Resistance of TiN Coated Tools (TiN 코팅 공구의 절삭저항에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.87-95
    • /
    • 2000
  • By using AIP(Arc Ion Plating) of a physical vapor deposition for the first time in Korea a ceramic tool whose surface is coated single layeredly with TiN is developed. In addition cutting resistance appearing in the process of finishing cut of hardened carbon tool steel STC3 is studied. The principal and radial components of cutting resistance in those cutting conditions appear to be the same or similar and the feed component is relatively small. The feed component is found to be in proportion to cutting width and the radial component in proportion to cutting thickness. Owing to coating the cutting resistance of a TiN coated ceramic tool increas-es compared with that of a general ceramic tool.

  • PDF

TMCP 강의 용접열영향부 인성에 관한 연구

  • 신민태;윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.4 no.3
    • /
    • pp.43-49
    • /
    • 1986
  • Weldability of the TMCP steel manufactured by controlled rolling followed by accelerated cooling process was investigated. For comparison, two other steel plates produced by different manufacturing processes were selected; normalized and controlled rolled. Tandem submerged arc welding with both side one run technique was carried out. The results of this study can be summarized as follows; TMCP steel having the lowest carbon equivalent shows the best combination of mechanical properties, not only in the base metal but also in the heat affected zone. In the HAZ, the accelerated colling effect imarted on the trengthis releved by the weld thermal cycles, and thus the strength of the welded joint decrease substantially accompanied with the fracture in the HAZ. On the other hand, not only the softening but the fine microstructure can preserve the high toughness of TMCP steel in the HAZ.

  • PDF