• Title/Summary/Keyword: Carbon/carbon-based materials

Search Result 1,339, Processing Time 0.027 seconds

Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery (리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성)

  • Eun Bi Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.32-38
    • /
    • 2023
  • In this study, the electrochemical properties of dopamine coated silicon/silicon carbide/carbon(Si/SiC/C) composite materials were investigated to improve cycle stability and rate performance of silicon-based anode active material for lithium-ion batteries. After synthesizing CTAB/SiO2 using the Stöber method, the Si/SiC composites were prepared through the magnesium thermal reduction method with NaCl as heat absorbent. Then, carbon coated Si/SiC anode materials were synthesized through polymerization of dopamine. The physical properties of the prepared Si/SiC/C anode materials were analyzed by SEM, TEM, XRD and BET. Also the electrochemical performance were investigated by cycle stability, rate performance, cyclic voltammetry and EIS test of lithium-ion batteries in 1 M LiPF6 (EC: DEC = 1:1 vol%) electrolyte. The prepared 1-Si/SiC showed a discharge capacity of 633 mAh/g and 1-Si/SiC/C had a discharge capacity of 877 mAh/g at 0.1 C after 100 cycles. Therefore, it was confirmed that cycle stability was improved through dopamine coating. In addition, the anode materials were obtain a high capacity of 576 mAh/g at 5 C and a capacity recovery of 99.9% at 0.1 C/0.1 C.

Manufacturing of Fe-Mn-Al-C Based Low Mn Lightweight Steel Via Direct Energy Deposition (Direct energy deposition 공정을 이용한 Fe-Mn-Al-C계 저망간 경량철강 제조)

  • Ko, Kwang Kyu;Son, Han Sol;Jung, Cha Hee;Bae, Hyo Ju;Park, Eun Hye;Kim, Jung Gi;Choi, Hyunjoo;Seol, Jae Bok
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.320-324
    • /
    • 2022
  • Lightweight steel is a crucial material that is being actively studied because of increased carbon emissions, tightening regulations regarding fuel efficiency, and the emergence of UAM, all of which have been recently labeled as global issues. Hence, new strategies concerning the thickness and size reduction of steel are required. In this study, we manufacture lightweight steel of the Fe-Mn-Al-C system, which has been recently studied using the DED process. By using 2.8 wt.% low-Mn lightweight steel, we attempt to solve the challenge of joining steel parts with a large amount of Mn. Among the various process variables, the laser scan power is set at 600 and 800 W, and the laser scan speed is fixed at 16.67 mm/s before the experiments. Several pores and cracks are observed under both conditions, and negligibly small pores of approximately 0.5 ㎛ are observed.

The Removal Characteristics of Bromate using Various Materials in GAC Process (다양한 재질의 활성탄을 이용한 GAC 공정에서의 브로메이트 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Jung, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.747-752
    • /
    • 2009
  • This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of bromate in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as 9252 bed volume (BV), 6821 BV, 5291 BV and 2431 BV, respectively. The experimental results of adsorption capacity (X/M) for bromate showed that two coal- based GACs were highest (1334.5 and 798.2 ${\mu}g$/g), the coconut-based GAC was intermediate (668.6 ${\mu}g$/g) and the wood-based GAC was lowest (156.8 ${\mu}g$/g). The X/M of the coal-based GACs was 2~8.5 times higher than the X/M of the coconut-based and wood-based GACs. The results of carbon usage rates (CURs) for the virgin two coal-, coconut- and wood-based GACs were shown as 0.19, 0.25, 0.33 and 0.71 g/day respectively. The adsorption capacity, k values, were also investigated by means of the GACs for bromate. The k values of two coal-, coconut- and wood- based GACs for bromate were found to be 121.3, 76.7, 43.3 and 14.6 respectively. This results suggested that using the virgin GAC made of coal was the best selection for removal of bromate in the water treatment for an advanced treatment.

Characterization of Potassium Based Dry CO2 Sorbents Developed for the Reduction of Side Reactions (부반응 저감 조성 K계 건식 CO2 흡수제 특성평가)

  • Jang, Young-shin;Kim, Ui-sik;Yoon, Yang-no;Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.337-341
    • /
    • 2019
  • In this study, the effects of two materials, active alumina and CaO based inorganic binder, which cause the side reaction on the K2CO3-based solid CO2 sorbents was investigated. K2CO3-based solid sorbents called KAM series was prepared by spray drying method and then measured its physical properties and CO2 sorption capacity. Among the KAM series sorbents, KAM(0.5) maintained high CO2 sorption capacity of 7.6 wt% after 3 cycle of sorption/regeneration reaction and showed very low attrition loss as low as 3.1 % which was measured by ASTM D5757-95.

Mechanical Properties of Graphene-based Polyimide Composites (그래핀 기반 폴리이미드 복합재의 기계적 물성)

  • Nam, Ki-Ho;Yu, Jaesang;You, Nam-Ho;Han, Haksoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.261-266
    • /
    • 2017
  • Polymer composites are materials in which various fillers are uniformly dispersed on the basis of organic resin. They have excellent processability and diversity for industrial products. Recently, as carbon nanomaterials are developed, there is a great deal of effort to use them as reinforcing fillers to fabricate high performance composite materials. In order to transfer the inherent properties of fillers into composite materials as much as possible, the good dispersion and orientation of fillers, and favorable interfacial interaction between fillers and matrix are considered to be very important. In this review article, we intent to derive and explain the relationship between surface chemical structure of fillers and physical properties of composites as a strategy of high strength and toughness of graphenebased polyimide composites.

Physical Property of Carbon Fiber Reinforced Thermoplastic Polymer based Composites by Repeating Processing of PP Composition (PP 복합 조성물의 반복 가공에 의한 열가소성 폴리머 탄소섬유 강화 복합재료의 물리적 특성 변화 연구)

  • Jin-Woo Lee;Jae-Young Lee;Seoung-Bo Shin;Jae-Hyung Park;Hyun-Ju Park;Kyung-Hun Oh;Jin-Hyuk Huh;Yun-Hae Kim;Ji-Eun Lee
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.68-75
    • /
    • 2024
  • Polypropylene (PP), a thermoplastic resin with excellent mechanical, thermal, chemical, and water resistance properties, has been attracting attention due to its economic efficiency and recyclability. However, repeated processing of thermoplastic resins can lead to property degradation, and the point at which quality degradation occurs varies depending on the processing conditions. In this study, we evaluated the performance changes of composite materials with repeated processing by blending PP resin with various additives and conducting extrusion and injection processes repeatedly. In addition, we evaluated the mechanical properties of composite materials to evaluate the effect of MFI value change during repeated processing on fiber impregnation in composite material processing.

Physical Properties of Activated Carbon with Coal Blend Ratios and Manufacturing Conditions (석탄배합비율과 제조공정조건에 따른 활성탄의 물성변화)

  • Kim, Sang Cheol;Park, Kyung Ai;Lee, Seung Bum;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.835-841
    • /
    • 1998
  • This study was devoted to the manufacturing process of activated carbon(AC) using and anthracite and bituminous coals which were regarded as appropriate for AC manufacturing, and the physcial properties a AC prepared with coal blends were characterized by the ultimate and proximate analysis. Generally, as the fraction of antheracite in AC from anthracite and bituminous coal blends was increased, AC yield was increased whereas iodine value($I_2$) was decreased. Being not related to mixing ratio of coal blends, the apparent density of AC remained constant. Pore development and iodine value of AC based on coal blends(Fushun and Dandong, 75:25 wt. %) were examined, varing carbonization and steam activation conditions. These results showed that the average pore diameter of AC was below $20{\AA}$ in the activation temperature range of 850 to $900^{\circ}C$ and the iodine value was above $1000m^2/g$. When the adsorption capacity of manufactured AC was compared with commercial AC, it is found that the AC from coal blends was comparable to the commercial AC. Therefore, it was confirmed that the characteristics of manufactured AC were changed with manufacturing conditions and the ratios and types of coal blends.

  • PDF

A Study on Changes in Indoor Air Pollution by Educational Activities -Centering on Newly-Established Elementary Schools- (교육활동에 따른 실내오염도 변화에 관한 연구 -신설 초등학교를 중심으로-)

  • Jeon, Seok-Jin
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.6 no.2
    • /
    • pp.66-90
    • /
    • 2007
  • The purpose of this study is to measure and analyze primary causes of indoor air pollution, including carbon dioxide, minute dust, and total volatile organic compounds, for each room before the beginning of a class through the time of discharge after the end of the class in general classrooms, computer rooms, and science rooms of three newly-established schools that opened in 2006, examine properties of indoor air environment in each room by educational activities at school, and determine effective management schemes; the results of this study can be summarized as follows: 1) As for implications for each item found in the mean for each place, since minute dust (PM10) was more likely to occur in time slots full of students' activities, such as a traveling class and a recess, than in the middle of a class and could be expected fully, it is necessary to make a scheme for cleaning in order to reduce minute dust within a room, for example, by usually using a vacuum cleaner indoors. 2) While carbon dioxide was expected to vary with the differences in the amount of breath between higher-graders and lower-graders in a general classroom but showed insignificant difference by grades, showing differences in pollution by four times at a maximum according to the opening of a window as expected, it is necessary to implement artificial or natural ventilation and take a positive measure, for example, by presenting a concrete ventilation scheme, in order to improve indoor air pollution at a room practice. 3) Total volatile organic compounds were found to exceed the standard by more than twice in general classrooms, science rooms, and computer rooms of the schools because of building materials, furnitures including desks and chairs, panels and boards for environment beautification, and items which could be detected even from students' clothes; while a field directly-reading tool was used, obtaining high reliability for the results, it is necessary to apply an analytical method based on process test separately for actual correct measurement if a significantly great amount of total volatile organic compounds appear as compared with other schools due to measuring expenses and consecutive measurements. 4) Since formaldehyde (HCHO) was generally found to exceed the standard in general classrooms, science rooms, and computer rooms, it is necessary to establish and operate a ventilator during a class in a computer room which requires airtightness and a science room in which an organic compound should be used for a class.

  • PDF

The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling (공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향)

  • Park, Youn Jung;Lee, Sang Hoi;Kim, Chi Nyon;Won, Jong Uk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

Improving the Corrosion Resistance of Cold-Rolled Carbon Steel by Treatment with a Hybrid Organic/Inorganic Coating Solution (유/무기 하이브리드 코팅액에 의한 냉간압연강판의 내식특성)

  • Kim, Jung-Ryang;Choi, Chang-Min;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the past, a very popular way to reduce the corrosion rate of zinc was the use of chemical conversion layers based on $Cr^{+6}$. However, the use of chromium salts is now restricted because of environmental protection legislation. Previous research investigated the optimum corrosion resistance of galvanized steel treated with an organic/inorganic solution containing Si. The result showed that the optimum corrosion resistance occurred by heat treatment of $190^{\circ}C$ in 5 min. In this study, one organic and three hybrid organic/inorganic coating solutions were applied to cold-rolled (CR) carbon steel. The coatings were then evaluated for corrosion resistance under a salt spray test. The coating solutions examined in this study consisted of urethane-only, urethane-Si, urethane-Si-Ti, and urethane-Si-Ti-epoxy. The results of the 7 h salt spray test showed that the urethane-Si-Ti and urethane-Si-Ti-epoxy coating solutions had superior corrosion resistance on CR steel.