• 제목/요약/키워드: Carbon/carbon-based materials

검색결과 1,325건 처리시간 0.026초

실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가 (Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery)

  • 김은지;신헌철
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.8-15
    • /
    • 2012
  • Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

(Fe79C11B8Si2)100-XCrX (X = 0-8) 조성 비정질 리본의 크롬 함량에 따른 비정질 형성능, 기계적 특성 평가 (Glass Forming Ability and Mechanical Properties of (Fe79C11B8Si2)100-XCrX (X = 0-8) Amorphous Ribbons)

  • 문재원;박지성;이승훈
    • 한국주조공학회지
    • /
    • 제36권1호
    • /
    • pp.18-23
    • /
    • 2016
  • Iron based amorphous ribbons with the nominal compositions of $(Fe_{79}C_{11}B_8Si_2)_{100-X}Cr_X$ (X = 0,2,4,6,8 at%) have been developed as reinforcements that can be applied to the concrete materials. Mechanical properties and glass forming ability of the ribbons can be enhanced by the optimum amounts of Cr additions that can also improve corrosion properties of the ribbons. Vein patterns typical of the fractured surface morphology of amorphous alloys have been observed on the surfaces of ribbons after tensile tests. It is inferred from the EDS analysis results of vein patterns that carbon segregations occur within the narrow shear band regions.

탄소재료의 적용 방법에 따른 파티클 보드의 연소 특성 (Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added)

  • 서현정;조정민;황욱;이민철
    • 한국연소학회지
    • /
    • 제22권4호
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.

순환유동층 보일러에서 무연탄-유연탄의 혼합연소 특성 (Co-combustion Characteristics of Mixed Coal with Anthracite and Bituminous in a Circulating Fluidized Bed Boiler)

  • 정의대;문승재
    • 플랜트 저널
    • /
    • 제6권2호
    • /
    • pp.70-77
    • /
    • 2010
  • This study investigated the characteristics of co-combustion of mixed anthracite (domestic and Vietnam) and bituminous coal (Sonoma, Australia) at circulating fluidized bed boiler in Donghae thermal power plant when mixing ratio of bituminous coal is variable. Co-combustion of bituminous coal contributes to improvement in general combustion characteristics such as moderately retaining temperature of furnace and recycle loop, reducing unburned carbon powder, and reducing discharge concentration of NOx and limestone supply owing to improvement in anthracite combustibility as the mixing ratio was increased. However, bed materials were needed to be added externally when the mixing ratio exceeded 40% because of reduction in generating bed materials based on reduction in ash production. When co-combustion was conducted in the section of 40 to 60% in the mixing ratio while the supplied particles of bituminous coal was increased from 6 mm to 10 mm, continuous operation was shown to be possible with upper differential pressure of 100 mmH2O (0.98 kPa) and more without addition of bed materials for the co-combustion of mixed anthracite and bituminous coal (to 50% or less of the ratio) and that of domestic coal and bituminous coal (to 60% of the ratio).

  • PDF

원자층증착법으로 증착된 강유전성 플루오라이트 구조 강유전체 박막의 불순물 효과 (A brief review on the effect of impurities on the atomic layer deposited fluorite-structure ferroelectrics)

  • 이동현;양건;박주용;박민혁
    • 한국표면공학회지
    • /
    • 제53권4호
    • /
    • pp.169-181
    • /
    • 2020
  • The ferroelectricity in emerging fluorite-structure oxides such as HfO2 and ZrO2 has attracted increasing interest since 2011. Different from conventional ferroelectrics, the fluorite-structure ferroelectrics could be reliably scaled down below 10 nm thickness with established atomic layer deposition technique. However, defects such as carbon, hydrogen, and nitrogen atoms in fluorite-structure ferroelectrics are reported to strongly affect the nanoscale polymorphism and resulting ferroelectricity. The characteristic nanoscale polymorphism and resulting ferroelectricity in fluorite-structure oxides have been reported to be influenced by defect concentration. Moreover, the conduction of charge carriers through fluorite-structure ferroelectrics is affected by impurities. In this review, the origin and effects of various kinds of defects are reviewed based on existing literature.

Efficient Electron Transfer in CdSe-py-SWNTs FETs

  • Jeong, So-Hee;Shim, H.C.;Han, Chang-Soo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.63-63
    • /
    • 2010
  • Ability to transport extracted carriers from NQDs is essential for the development of most NQD based applications. Strategies to facilitate carrier transport while preserving NQDs' optical characteristics include: 1) Fabricating neat films of NQDs with modified surfaces either by adapting series of ligands with certain limitations or by applying physical processes such as heat annealing 2) Coupling of NQDs to one-dimensional nanostructures such as single walled carbon nanotubes (SWNTs) or various types of nanowires. NQD-nanowire hybrid nanostructures are expected to facilitate selective wavelength absorption, charge transfer to 1-D nanostructures, and efficient carrier transport. Even with the vast interests in using NQD-SWNT hybrid materials in optoelectric applications, still, no reports so far have clearly elucidated the optoelectric behavior when they were assembled on the FET mainly because the complexity involving in both components in their preparation and characterization. We have monitored the optical properties of both components (NQDs, SWNTs) from the synthesis, to the assembly, and to the device. More importantly, by using pyridine molecules as a linker to non-covalently attach NQDs to SWNTs, we were able to assemble NQDs on SWNTs with precise density control without harming their electronic structures. Furthermore, by measuring electrical signals from the fabricated aligned SWNTs-FET using dielectrophoresis (DEP), we were able to elucidate the charge transfer mechanism.

  • PDF

재료 및 기법의 특성에 기반하는 업사이클 패션 디자인 연구 (A Study on Upcycle Fashion Design Based on the Characteristics of Materials and Techniques)

  • 유해민;전재훈
    • 한국의류학회지
    • /
    • 제44권5호
    • /
    • pp.984-1003
    • /
    • 2020
  • The global fashion industry produces significant carbon emission and micro-plastics in oceans. Studies on sustainable design methods as such environmental issues in fashion are becoming intensely problematic. This study conducted a case study on 100 upcycle fashion brands to propose strategical upcycle fashion designs to compete in a sustainable fashion market. A literature review indicated that 3 types of textile wastes are generated as upcycling materials: post-producer, pre-consumer and post-consumer. Wastes are categorized together with 3 types of techniques: redesigning, reconstruction and handcrafting. This research derived 7 types of upcycle fashion designs that have the following features: to make luxury upcycle fashion products, to make sustainable grunge looks, to re-evaluate deadstocks, to recover vintage clothes, to convert waste into craft-arts, to offer solutions for damaged products, and to make zero-waste small fabric waste. The study results show that key drivers in the upcycle fashion design are the redesignability of materials and technique-related costs. This study implies that adopting appropriate design features can be a useful strategy for designers. New technologies will solve current problems and encourage them to design products in a new circular value system.

기계학습을 활용한 공정 변수별 오스템퍼링 경도 예측 비교 연구 (Comparative Study of Aus-Tempering Hardness Prediction by Process Using Machine Learning)

  • 김경훈;박종구;허우로;양해웅
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.396-401
    • /
    • 2023
  • Aus-tempering heat treatment is suitable for thin and small-sized in precision parts. However, the heat treatment process relies on the experience and skill of the operator, making it challenging to produce precision parts due to the cold forging process. The aims of this study is to explore suitable machine learning models using data from the aus-tempering heat treatment process and analyze the factors that significantly impact the mechanic properties (e.g. hardness). As a result, the study analyzed, from a machine learning perspective, how hardness prediction varies based on the quenching temperature, carbon (C), and copper (Cu) contents.

Synthesis and Properties of Ni-CNT Nanocomposites Using Electrical Explosion of Wire in Different Conditions

  • Maithili Biswas; Jin-Chun Kim
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.138-143
    • /
    • 2024
  • Ni-CNT nanocomposites were synthesized via the electrical explosion of wire (EEW) in acetone and deionized (DI) water liquid conditions with different CNT compositions. The change in the shape and properties of the Ni-CNT nanopowders were determined based on the type of fluids and CNT compositions. In every case, the Ni nanopowder had a spherical shape and the CNT powder had a tube shape. However, the Ni-CNT nanopowders obtained in DI water exhibited irregular shapes due to the oxidation of Ni. Phase analysis also revealed the existence of nickel oxide when using DI water, as well as some unknown peaks with acetone, which may form due to the metastable phase of Ni. Magnetic properties were investigated using a Vibrating Sample Magnetometer (VSM) for all cases. Nanopowders prepared in DI water conditions had better magnetic properties than those in acetone, as evidenced by the simultaneous formation of super paramagnetic NiO peaks and ferromagnetic Ni peaks. The DI water (Ni:CNT = 1:0.3) sample revealed better magnetic results than the DI water (Ni-CNT = 1:0.5) because it had less CNT contents.