• 제목/요약/키워드: Carbon/carbon-based materials

검색결과 1,325건 처리시간 0.031초

Sustainable Environmental Science & Recycling Technology Education for High School and Middle Schools: Global Scenario

  • Thenepalli, Thriveni;Chilakala, Ramakrsihna;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제28권1호
    • /
    • pp.45-48
    • /
    • 2019
  • Currently, the global atmosphere around the world is altering at a very rapid pace. Among those changes, some are beneficial, but most of the changes are lead to destruction to our planet. The area of environmental science is a significant resource for learning more about these changes. Due to the urbanization, the human population is increasing, natural resources becoming very limited. To solve the limited resources issues, recycling is absolutely an alternative source for the new demands and limitations. Recycling education is very important to raise awareness among students and their communities about the need for recycling and what materials are recyclable locally. In this paper, we reported the role of sustainability science and technology and the impact of recycling research education in the middle schools, both in developing countries and Asian countries and also we included the brief data of global recycling of waste.

토르마린을 혼입한 무시멘트 경화체의 강도 특성 (Strength Properties of Non-cement Matrix Mixed with Tourmaline)

  • 권형순;이창우;황우준;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.55-56
    • /
    • 2022
  • As global warming becomes serious, research is continuously being conducted to reduce CO2 emissions. Among building materials, the carbon emission of cement is so high that it accounts for 6.8% of the carbon emission of the entire industry. Studies replacement of cement with blast furnace slag and fly ash are steadily increasing. In addition, efforts are being made to reduce air pollution due to increased damage caused by increased concentrations of harmful substances such as fine dust and heavy metals in the air. There is an increasing number of studies that enable adsorption by mixing adsorbents into building materials. This study reviewed the strength properties to make an adsorbable non-cement finishing material by mixing tourmaline, an adsorbent, based on the non-cement composite, and confirmed that the strength decreases as the replacement ratio increases.

  • PDF

스테인리스강 STS 316L과 탄소강 A516-70의 이종금속 GTA 용접부 특성에 대한 연구 (A Study of Characteristics on the Dissimilar Metals (STS 316L - Carbon Steel: ASTM A516-70) Welds made with GTAW)

  • 김세철;신태우;문인준;장복수;고진현
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.37-43
    • /
    • 2015
  • Characteristics of dissimilar metal welds between STS 316L and carbon steel ASTM A516 Gr.70 made with GTAW have been evaluated in terms of microstructure, ferrite content, chemical analysis, hardness and corrosion resistance. Three heat inputs of 9.00, 11.25, 13.00kJ/cm were employed to make joints of dissimilar metals with ER309 wire. Based on microstructural examination, the amount of vermicular type of ${\delta}$-ferrite was increased with increasing heat input due to the increase of Creq/Nieq in the second layer of welds. Based on the EDX analysis of weld metals, Cr and Ni content in the 2nd layer increased while those content in the first layer of welds decreased with heat inputs. Cellular solidification mode in the 1st layer and dendritic solidification mode in the 2nd layer due to different cooling rates were prevailed, respectively. Heat affected zone which formed hard microstructure showed higher hardness than the weld metal. The salt spray test of dissimilar metals weld joints showed that the carbon steel surfaces only corroded. The weight loss rate due to corrosion increased up to 100hours but it decreased above 100 hours. There was little difference in the weight loss caused by corrosion regardless of heat inputs.

다중벽 카본 나노튜브를 이용한 FET식 NOx 가스 센싱 시스템 제작 (The Fabrication of FET-Type NOx Gas Sensing System Using the MWCNT)

  • 김현수;장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제26권4호
    • /
    • pp.325-329
    • /
    • 2013
  • Carbon nanotubes(CNT) have excellent electrical, chemical stability and mechanical properties. These can be used in a variety of fields. MWCNT are extremely sensitive for minute changes in the ambient gas, namely, their sensing properties varies greatly with the absorption of gas such as NOx and $H_2$. We investigate the electrical properties of CNTs and make a NOx gas sensor based on Multi-walled carbon nanotubes (MWCNT) materials. We obtained the NOx gas sensor of MWCNT based on P-type Si wafer that has the resistivity of $1.667{\times}10^{-1}[{\Omega}{\cdot}cm]$. We knew that the sensitivity of sensor decreased with increasing of NOx gas concentration. And the sensitivity of sensor shows the largest value at $20^{\circ}C$. The sensitivity of sensor decrease with increasing the temperature. Also absorption energy of NOx gas molecule on the MWCNT surface decreases with increasing concentration of NOx gas.

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.

인공촉각과 피부를 위한 탄소나노튜브 기반 생체 모방형 신경 개발 (A Biomimetic Artificial Neuron Matrix System Based on Carbon Nanotubes for Tactile Sensing of e-Skin)

  • 김종민;김진호;차주영;김성용;강인필
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.188-192
    • /
    • 2012
  • In this study, a carbon nanotube (CNT) flexible strain sensor was fabricated with CNT based epoxy and rubber composites for tactile sensing. The flexible strain sensor can be fabricated as a long fibrous sensor and it also may be able to measure large deformation and contact information on a structure. The long and flexible sensor can be considered to be a continuous sensor like a dendrite of a neuron in the human body and we named the sensor as a biomimetic artificial neuron. For the application of the neuron in biomimetic engineering, an ANMS (Artificial Neuron Matrix System) was developed by means of the array of the neurons with a signal processing system. Moreover, a strain positioning algorithm was also developed to find localized tactile information of the ANMS with Labview for the application of an artificial e-skin.

First-principles Calculations of the Phonon Transport in Carbon Atomic Chains Based on Atomistic Green's Function Formalism

  • Kim, Hu Sung;Park, Min Kyu;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.425.1-425.1
    • /
    • 2014
  • Thermal transport in nanomaterials is not only scientifically interesting but also technological important for various future electronic, bio, and energy device applications. Among the various computation approaches to investigate lattice thermal transport phenomena in nanoscale, the atomistic nonequilibrium Green's function approach based on first-principles density functional theory calculations appeared as a promising method given the continued miniaturization of devices and the difficulty of developing classical force constants for novel nanoscale interfaces. Among the nanometerials, carbon atomic chains, namely the cumulene (all-doulble bonds, ${\cdots}C=C=C=C{\cdots}$) and polyyne (alternation of single and triple bonds, ${\cdots}C{\equiv}C-C{\equiv}C{\cdots}$) can be considered as the extream cases of interconnction materials for nanodevices. After the discovery and realization of carbon atomic chains, their electronic transport properties have been widely studied. For the thermal transport properties, however, there have been few literatures for this simple linear chain system. In this work, we first report on the development of a non-equilibrium Green's function theory-based computational tool for atomistic thermal transport calculations of nanojunctions. Using the developed tool, we investigated phonon dispersion and transmission properties of polyethylene (${\cdots}CH2-CH2-CH2-CH2{\cdots}$) and polyene (${\cdots}CH-CH-CH-CH{\cdots}$) structures as well as the cumulene and polyyne. The resulting phonon dispersion from polyethylene and polyene showed agreement with previous results. Compared to the cumulene, the gap was found near the ${\Gamma}$ point of the phonon dispersion of polyyne as the prediction of Peierls distortion, and this feature was reflected in the phonon transmission of polyyne. We also investigated the range of interatomic force interactions with increase in the size of the simulation system to check the convergence criteria. Compared to polyethylene and polyene, polyyne and cumulene showed spatially long-ranged force interactions. This is reflected on the differences in phonon transport caused by the delicate differences in electronic structure.

  • PDF

CO2 배관의 연속연성파괴 분석 (Analysis on Dynamic Ductile Fracture of Transportation Pipeline for Carbon Dioxide Capture and Storage System)

  • 정효태;최병학;김우식;백종현
    • 한국가스학회지
    • /
    • 제18권3호
    • /
    • pp.13-19
    • /
    • 2014
  • 이산화탄소 포집 및 저장 시스템(CCS, Carbon dioxide Capture and Storage system)의 수송배관에 대한 연속연성파괴(DDF, Dynamic Ductile Fracture)를 연구하기 위하여 Battlle Two Curve법(BTCM)으로 CCS수송배관의 연속연성파괴거동을 해석하여 천연가스 수송배관의 연속연성파괴거동과 비교하였다. 또한, $CO_2$배관에서의 배관두께 및 사용온도에 따른 연속연성파괴 민감도를 분석함으로써 연속연성파괴에 대한 사용기준을 해석하였다. 우리나라 기후조건에 따른 $CO_2$배관두께와 수송압력 사용기준을 분석하였으며, 상온의 경우에는 기존의 천연가스용 배관을 $CO_2$배관으로 사용하기 위해서는 배관두께가 7mm이상이어야 하고 수송압력은 54bar이하이어야 함을 해석하였다.

리오셀 섬유의 가교 처리가 탄소 직물 특성에 미치는 영향 (Effect of Cross-linking Treatment of Lyocell Fabric on Carbon Fabric Properties)

  • 이수오;박길영;김우성;황태경;김연철;서상규;정용식
    • 한국추진공학회지
    • /
    • 제23권6호
    • /
    • pp.21-27
    • /
    • 2019
  • 우주 항공용 노즐에 사용되는 셀룰로오스계 탄소 직물은 낮은 열전도도, 높은 내삭마 특성을 가지고 있다. 그러나 내염화 및 흑연화 공정에서 70~90% 중량이 감소하여 최종 탄소 직물 제조 시 수율이 낮은 단점이 있다. 본 연구에서는 리오셀 직물에 인계난연제로 인산(Phosphoric acid), 가교제로 시트르산(Citric acid)을 사용하여 전처리한 후 FT-IR, XRD, TGA 분석을 통하여 화학적 구조 및 열적 특성 변화를 확인하였다. 또한 리오셀 직물의 내염화 및 흑연화 후 중량을 측정하여 시트르산이리오셀 직물 수율 변화에 미치는 영향에 대하여 확인하였으며, 16 wt% 첨가 시 흑연화 수율이 8.1% 까지 증가하는 것을 확인하였다.