• 제목/요약/키워드: Carbenium Ion

검색결과 11건 처리시간 0.02초

Theoretical Study on Polymerization of Oxepane High Explosives

  • Kim, Joon-Tae
    • 통합자연과학논문집
    • /
    • 제5권3호
    • /
    • pp.175-181
    • /
    • 2012
  • Oxepane high explosives substituted to explosive group such as azido, nitrato and hydrazino are investigated theoretically the acid catalyzed reaction using the semiempirical MINDO/3, MNDO and AM1 methods to use as the guidelines of high explosives. The nucleophilicity and basicity of oxepane high explosives can be explained by the value of negative charge on oxygen atom of oxepane and the reactivity in propagation step can be represented by the value of positive charge on carbon atom and low electrophile LUMO energy. It was known that carbenium ion was favorable due to the stable energy (19.507~32.101 Kcal/mol) between oxonium ion and carbenium ion in the process of cyclic oxonium ion of oxepane high explosives being converted to open carbenium ion in oxepane high explosives. The value of concentration of cyclic oxonium ion and open carbenium ion in equilibrium status was found to be a major determinant of mechanism, it was expected to react faster in the prepolymer propagation step in SN1 mechanism than in that of $S_N2$.

Oxolane 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구 (A Study Based on Molecular Orbital Theory of Polymerization of Oxolane High Explosives)

  • 김준태
    • 공업화학
    • /
    • 제21권3호
    • /
    • pp.278-283
    • /
    • 2010
  • 폭발성기를 가진 azido기($-CH_2N_3$), nitrato기($-CH_2ONO_2$) 그리고 hydrazino기(-$CH_2N_2H_3$)로 치환된 옥소란 고폭 화약류의 산 촉매 하에서 중합반응을 반경험적인 MINDO/3, MNDO, AM1 방법 등을 사용하여 이론적으로 고찰하였다. 옥소란 고폭 화약류의 친핵성 및 염기성은 옥소란 산소원자의 음전하크기로 설명할 수 있고, 중합하의 성장단계에서 옥소란의 반응성은 옥소란의 반응중심 탄소원자의 양전하크기와 친전자체의 낮은 LUMO 에너지에 좌우됨을 알 수 있다. 옥소란 고폭 화약류의 고리형 oxonium 이온형이 열린 carbenium 이온형으로 전환되는 과정은 oxonium 이온과 carbenium 이온 사이의 계산된 안정화 에너지(17.950~30.197 kcal/mol)에 의하면 carbenium 이온이 더 유리함을 예측 할 수 있다. 평형상태의 고리형 oxonium 이온과 열린 carbenium 이온의 농도 크기가 반응 메카니즘의 결정단계이며, 산 촉매 하의 형태와 계산을 기초로 하여 빠른 평형을 예상하여 볼 때 선폴리머(prepolymer) 성장단계에서 $S_N1$ 메카니즘이 $S_N2$ 메카니즘보다 빠르게 반응 할 것으로 예측된다.

A Study on Polymerization of Oxocane High Explosives

  • Kim, Joon-Tae
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.266-272
    • /
    • 2014
  • Oxocane high explosives substituted to explosive group such as azide (-CH2N3), nitrate (-CH2ONO2), and hydrazine (-CH2N2H3) are investigated theoretically the acid catalyzed reaction using the semiempirical MINDO/3, MNDO and AM1 methods to use as the guidelines of high explosives. The nucleophilicity and basicity of oxocane high explosives can be explained by the value of negative charge on oxygen atom of oxocane and the reactivity in propagation step can be represented by the value of positive charge on carbon atom and low electrophile LUMO energy. It was known that carbenium ion was favorable due to the stable energy (11.745~25.461 Kcal/mol) between oxonium ion and carbenium ion in the process of cyclic oxonium ion of oxocane high explosives being converted to open carbenium ion in oxocane high explosives. The value of concentration of cyclic oxonium ion and open carbenium ion in equilibrium status was found to be a major determinant of mechanism, it was expected to react faster in the prepolymer propagation step in SN1 mechanism than in that of SN2.

산촉매하의 옥세탄 공중합에 관한 분자 궤도론적 연구 (Theoretical Studies on The Cationic Polymerization Mechanism of Oxetanes)

  • 전용구;김준태;박성규
    • 대한화학회지
    • /
    • 제35권6호
    • /
    • pp.636-644
    • /
    • 1991
  • 에너지기인 methoxy기$(-CH_2OCH_3)$, azido기$(-CH_2N_3)$ 그리고 nitrato기$(-CH_2ONO_2)$로 치환된 옥세탄(oxetane)의 단량체를 산촉매하의 중합반응에 관해서 반경험적인 MINDO/3, MNDO, AMI 방법 등을 사용하여 이론적으로 고찰하였다. 치환체 옥세탄의 친핵성 및 염기성은 옥세탄 산소원자의 음전하 크기로 설명할 수 있으며, 공중합하의 성장단계에서 옥세탄의 반응성은 옥세탄의 반응 중심 탄소의 양전하 크기와 친전자체의 낮은 LUMO 에너지에 좌우됨이 예측된다. 에너지화기 고리형 oxenium 이온형이 열린 carbenium 이온형으로 전환되는 과정은 oxonium 이온과 carbenium 이온 사이의 계산된 안정화에너지(약 10~20 kcal/mole)에 의하면 carbenium 이온이 더 유리함을 예측할 수 있다. 평형상태의 고리형 oxonium 이온과 열린 carbenium 이온의 농도크기가 반응메카니즘의 결정단계이며, 산촉매하의 형태와 계산을 기초로 하여 빠른 평형을 예상하여 볼 때 선폴리머 성장단계에서 SN1 메카니즘이 SN2 메카니즘보다 빠르게 반응할 것으로 예측된다.

  • PDF

산촉매하의 옥시란 공중합에 관한 분자궤도론적 연구 (Theoretical Studies on the Cationic Polymerization Mechanism of Oxiranes)

  • 전용구
    • 대한화학회지
    • /
    • 제35권5호
    • /
    • pp.461-468
    • /
    • 1991
  • 에너지기인 azido기$(-CH_2N_3)$, nitrato기$(-CH_2ONO_2)$로 치환된 옥시란의 단량체를 산촉매하의 중합반응에 관해서 반경험적인 MNDO, $AM_1$ 방법 등을 사용하여 이론적으로 고찰하였다. 치환체 옥시란의 친핵성 및 염기성은 옥시란 산소의 음전하 크기로 설명할 수 있다. 공중합하의 성장단계에서 옥시란의 반응성은 반응중심 탄소의 양전하 크기와 친전자체의 낮은 LUMO 에너지에 죄우됨을 예측된다. 환 oxonium 양이온이 개환되어 선 carbenium 양이온으로 전환 과정은 oxonium 양이온과 carbenium 양이온 사이의 계산된 안정화 에너지는 약 30∼40 kcal/mole로 carbenium 이온이 더 유리함을 예측된다. 평형상태의 옥소늄 이온과 카베늄 이온의 농도 크기가 반응 메타니즘의 결정단계이다.선폴리머 성장단계에서 $SN_1$ 메카니즘이 $SN_2$ 메카니즘보다 빠르게 반응할 것으로 예측된다.

  • PDF

옥세탄 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구 (A Study Based on Molecular Orbital Theory of Polymerization of Oxetane High Explosives)

  • 김준태
    • 공업화학
    • /
    • 제20권2호
    • /
    • pp.159-164
    • /
    • 2009
  • 제5류 위험물에 속하며 폭발성기를 가진 azido기$(-CH_2N_3)$, nitrato기$(-CH_2ONO_2)$ 그리고 hydrazino기$(-CH_2N_2H_3)$로 치환된 옥세탄 고폭 화약류의 단량체들을 산 촉매하의 중합반응에 관하여 반응성, 반응메카니즘, 반응과정에 대하여 알아보고자 형식전하, 생성열, 에너지 준위를 반경험적인 MINDO/3, MNDO, AM1 방법 등을 사용하여 이론적으로 고찰하였다. 옥세탄 고폭 화약류의 친핵성 및 염기성은 옥세탄 산소원자의 음전하크기로 설명할 수 있고, 산 촉매하의 중합반응은 성장단계에서 옥세탄의 반응성은 중심 탄소원자의 양전하크기와 친전자체의 낮은 LUMO 에너지에 좌우됨을 알 수 있었다. 옥세탄 고폭 화약류의 전환되는 과정은 oxonium 이온과 carbenium이온의 안정화 에너지(13.90~31.02 Kcal/mole)를 비교하여 보면 carbenium 이온이 더 유리함을 예측 할 수 있었다. 또한, 평형상태에서 oxonium 이온과 carbenium 이온의 농도가 반응 메카니즘을 좌우하며, 산 촉매하의 중합반응 형태와 계산을 기초로 하여 빠른 평형을 예상하여 볼 때 선폴리머(prepolymer) 성장단계에서 $S_N1$ 메카니즘이 $S_N2$ 메카니즘보다 빠르게 반응 할 것으로 예측되었다.

산 촉매하의 Cyclic Acetals 공중합반응에 관한 분자궤도론적 연구 (Theoretical Studies on the Cationic Polymerization Mechanism of Cyclic Acetals)

  • 전용구;김재경
    • 대한화학회지
    • /
    • 제36권2호
    • /
    • pp.197-204
    • /
    • 1992
  • Cyclic acetal류 산촉매하의 중합반응에 대해서 반경험적인 MINDO/3, MNDO, $AM_1$방법 등을 사용하여 이론적으로 고찰하였다. Oxacyclic acetal의 친핵성 및 염기성은 고리 아세탈의 산소와 음전하 크기로 설명할 수 있다. 공중합하의 성장단계에서 아세탈의 반응성은 반응 중심 탄소($C_2$)의 양전하 크기와 친전자체의 낮은 LUMO에너지에 좌우됨을 예측할 수 있다. 2-butyl-1,3-dioxepane의 성장단계의 화학종인 oxonuim 이온과 carbenium 이온 사이의 계산된 안정화 에너지는 5${\sim}$7kcal/mole로 carbenium 이온이 더 유리함을 예측할 수 있다. 공중합체의 성장단계에서 두 양이온형이 빠른 속도로 평형에 도달하며, 계산 결과에 의한 반응 좌표는 $S_N1$ 메카니즘이 $S_N2$ 메카니즘보다 빠르게 진행할 것으로 예측된다.

  • PDF

Optically Active Intermediate from the Degradation of (-)-Laudanosine, a Benzylisoquinoline Alkaloid, with Ethyl Chloroformate

  • Dong-Ung Lee;W. Wiegrebe
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권4호
    • /
    • pp.373-376
    • /
    • 1991
  • Degradation of (-)-laudanosine, a 1-benzyl-1,2,3,4-tetrahydroisoquinoline alkaloid, with ethyl chloroformate (ECF) afforded an optically active chloro-carbamate as an intermediate. The reason why this intermediate exhibits an optical activity was investigated by comparison with the reactions of some model compounds with ECF. It may be supposed that the chloride group in a hypothetic carbenium ion intermediate stands very closely to the chiral center, so conserving optical activity. However, a neighboring group effect can not be excluded.

Mechanism on the Formation of Bis-9,9'-thioxanthenylmethane from the Reaction of Thioxanthylium Ion With Dimethylmercury(I)

  • Kim, Sung-Hoon;Kim, Kyong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권4호
    • /
    • pp.157-162
    • /
    • 1982
  • 9-Methylenethioxanthene(6) was synthesized and for the first time good mp and spectral data were taken. Reaction of (6) with thioxanthylium ion (1) in acetonitrile led to a carbenium addition adduct (8) which then was either attacked by a variety of nucleophiles subsequently added or underwent deprotonation reaction to give an olefin (13). From these reactions, was obtained bis-9,9'-thioxanthenylmethane (2). These results indicate clearly that (2) can be formed via (8) by accepting hydride. Isolation of (2) and (6) from the reaction of (1) with 9-methylthioxanthylium ion (18) also supports the involvement of (8) in the reaction of (1) with dimethylmercury. However, addition of thioxanthene radical (4) to (6) has not been ruled out.

N-Butene으로부터 i-Butylene 합성을 위한 Pt/MoO3/SiO2 촉매의 표면 구조 변화 (Morphological change of Pt/MoO3/SiO2 for the Synthesis of i-Butylene from n-Butene)

  • 김진걸
    • 공업화학
    • /
    • 제7권5호
    • /
    • pp.861-868
    • /
    • 1996
  • n-butene의 i-butene으로의 골격 이성질화 반응은 발열반응으로서 열역학적으로 저온($100^{\circ}C{\sim}150^{\circ}C$)에서 최고수율을 나타내며 반응 mechanism은 carbonium ion의 형성과 methyl기의 골격치환에 따른 2step으로 규정된다. 산처리되어 강산점을 가지는 zeolite, alumina와 비교하여, $Pt/MoO_3/SiO_2$ 촉매 사용시 $110^{\circ}C$ 등온 환원반응 실험으로 설명되는 Proton의 증가된 표면 이동 속도는 골격 이성질화 반응시 carbonium ion의 형성을 빠르게 촉진시킬 수 있으며, 이에 따라 $110^{\circ}C$에서 1-butene의 수율은 최대치로 나타나며 부산물은 생성되지 않는다. $110^{\circ}C$에서의 등온 환원반응에서 $Pt/MoO_3/SiO_2$$Pt/MoO_3/Al_2O_3$보다 높은 proton spillover 속도를 보이지만 약 90분 경과한 $MoO_3$ 표면의 proton 포화상태에서는 i-butene의 반응수율이 같고, $MoO_3$가 없는 zeolite, $Pt/SiO_2$보다 높은 전환율을 보이므로 proton spillover에 의한 carbonium ion의 생성이 반응속도를 조절하는 것으로 나타난다. $Pt/MoO_3/SiO_2$에서 산점의 증가, Pt 및 $MoO_3$ 함량의 증감은 i-butene 수율에 영향을 미치지 않으며, 이는 proton spillover에 의한 Pt 표면위의 carbonium ion의 형성이 속도 결정 단계이기 때문인 것으로 사료된다.

  • PDF