• Title/Summary/Keyword: Carbapenemases

Search Result 8, Processing Time 0.019 seconds

Evaluation of MALDI Biotyping for Rapid Subspecies Identification of Carbapenemase-Producing Bacteria via Protein Profiling

  • Somboro, Anou M.;Tiwari, Dileep;Shobo, Adeola;Bester, Linda A.;Kruger, Hendrik G.;Govender, Thavendran;Essack, Sabiha Y.
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.110-114
    • /
    • 2014
  • The method of direct mass spectrometry profiling is reliable and reproducible for the rapid identification of clinical isolates of bacteria and fungi. This is the first study evaluating the approach of MALDI-TOF mass spectrometry profiling for rapid identification of carbapenemase-resistant enterobacteriaceae (CRE). Proof of concept was achieved by the discrimination of CRE using MALDI Biotyper MS based on the protein. This profiling appears promising by the visual observation of consistent unique peaks, albeit low intensity, that could be picked up from the mean spectra (MSP) method. The Biotyper MSP creation and identification methods needed to be optimized to provide significantly improved differences in scores to allow for subspecies identification with and without carbapenemases. These spectra were subjected to visual peak picking and in all cases; there were pertinent differences in the presence or absence of potential biomarker peaks to differentiate isolates. We also evaluated this method for potential discrimination between different carbapenemases bacteria, utilizing the same strategy. Based on our data and pending further investigation in other CREs, MALDI-TOF MS has potential as a diagnostic tool for the rapid identification of even closely related carbapenemases but would require a paradigm shift in which Biotyper suppliers enable more flexible software control of mass spectral profiling methods.

Prevalence of Carbapenem-Resistant Enterobacterales and Their Diverse Resistance Mechanisms

  • Sohyeong Kim;Sang Rae Kim;Xianglan Xuan;Yujin Park;Seung Jun Roh;Sunghyun Kim
    • Biomedical Science Letters
    • /
    • v.30 no.3
    • /
    • pp.101-112
    • /
    • 2024
  • This review provides an overview of carbapenem-resistant Enterobacterales (CRE) studies. CRE, called superbugs, has a high mortality rate and an increased resistance rate in several countries. The bacteria representing CRE are Klebsiella species and Escherichia spp., and they cause urinary tract infections (UTIs) and bloodstream infections (BSIs). CRE acquires resistance due to several mechanisms, typically divided into carbapenemase-producing (CP)-CRE and non-CP-CRE. Furthermore, although there are several antibiotics developed to treat CRE, they have their limitations; thus, antibiotic combination therapies or novel treatments are being developed. Therefore, since research on CRE and the use of appropriate antibiotics is important, some CRE-resistant mechanisms that enhance them are discussed. This review article was written using information obtained from Google Scholar and the National Center for Biotechnology Information website.

Outbreaks of Imipenem-Resistant Acinetobacter baumannii Producing Carbapenemases in Korea

  • Jeong Seok-Hoon;Bae Il-Kwon;Park Kwang-Ok;An Young-Jun;Sohn Seung-Ghyu;Jang Seon-Ju;Sung Kwang-Hoon;Yang Ki-Suk;Lee Kyung-Won;Young Dong-Eun;Lee Sang-Hee
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.423-431
    • /
    • 2006
  • Among 53 Acinetobacter baumannii isolates collected in 2004, nine imipenem-resistant isolates were obtained from clinical specimens taken from patients hospitalized in Busan, Korea. Nine carbapenemase-producing isolates were further investigated in order to determine the mechanisms underlying resistance. These isolates were then analyzed via antibiotic susceptibility testing, microbiological tests of carbapenemase activity, pI determination, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. One outbreak involved seven cases of infection by A. baumannii producing OXA-23 ${\beta}-lactamase$, and was found to have been caused by a single ERIC-PCR clone. During the study period, the other outbreak involved two cases of infection by A. baumannii producing IMP-1 ${\beta}-lactamase$. The two clones, one from each of the outbreaks, were characterized via a modified cloverleaf synergy test and an EDTA-disk synergy test. The isoelectric focusing of the crude bacterial extracts detected nitrocefin-positive bands with pI values of 6.65 (OXA-23) and 9.0 (IMP-1). The PCR amplification and characterization of the amplicons via direct sequencing showed that the clonal isolates harbored $bla_{IMP-1}$ or $bla_{oxA-23}$ determinants. The two clones were characterized by a multidrug resistance phenotype that remained unaltered throughout the outbreak. This resistance encompassed penicillins, extended-spectrum cephalosporins, carbapenems, monobactams, and aminoglycosides. These results appear to show that the imipenem resistance observed among nine Korean A. baumannii isolates could be attributed to the spread of an IMP-lor OXA-23-producing clone. Our microbiological test of carbapenemase activity is a simple method for the screening of clinical isolates producing class D carbapenemase and/or class B $metallo-{\beta}-lactamase$, in order both to determine their clinical impact and to prevent further spread.

Clinical Laboratory Aspect of Carbapenem-Resistant Enterobacteriaceae (카바페넴내성장내세균속균종의 임상검사 측면)

  • Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.18-27
    • /
    • 2020
  • The correct distinction of carbapenem-resistant Enterobacteriaceae (CRE) and ccarbapenemase producing Enterobacteriaceae (CPE) and the rapid detection of CPE are important for instituting the correct treatment and management of clinical infections. Screening protocols are mainly based on cultures of rectal swab specimens on selective media followed by phenotypic tests to confirm a carbapenem-hydrolyzing activity, the rapid carbapenem inactivation method, lateral flow immunoassay, the matrix-assisted laser desorption ionization-time-of-flight test and molecular methods. The CPE is accurate for detection, and is essential for the clinical treatment and prevention of infections. A variety of phenotypic methods and gene-based methods are available for the rapid detection of carbapenemases, and these are expected to be routinely used in clinical microbiology laboratories. Therefore, to control the spread of carbapenemase, many laboratories around the world will need to use reliable, fast, high efficiency, simple and low cost methods. Optimal effects in patient applications would require rapid testing of CRE to provide reproducible support for antimicrobial management interventions or the treatment by various types of clinicians. For the optimal test method, it is necessary to combine complementary test methods to discriminate between various resistant bacterial species and to discover the genetic diversity of various types of carbapenemase for arriving at the best infection control strategy.

Molecular detection of blaVIM, blaBIC, blaKPC, and blaSIM genes from isolated bacteria in retail meats (육류용 고기로부터 분자진단을 이용한 항생제내성 유전자 양상)

  • Hwang, You Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.413-419
    • /
    • 2021
  • The purpose of this study was to investigate the ability to treat and prevent infection by multiple Gram-negative bacterial pathogens as a last choice option in the treatment of serious infections in clinical settings. The global spread of extended-spectrum 𝛽-lactamases (ESBLs) and/or carbapenemases in microorganisms are of enormous concern to health services because they are often associated with multi-drug resistance which significantly restricts the antibiotic treatment options. In this study, the antimicrobial resistance profiles of bacteria isolated from South Korean market-derived meat samples were determined by the disc diffusion method. PCR was used to detect the presence of antibiotic resistance genes and ESBL producing genes. In total, we tested 181 isolated colonies from 36 market-derived meat samples. Single PCR and DNA sequencing results revealed that genes blaVIM, blaBIC, blaKPC, and blaSIM were present in the bacteria isolated from retail meat. The bacteria in the meat were separately sequenced and based on alignment, four different bacteria were identified. These findings suggest that bacteria found in retail meats are a reservoir for the spreading of ESBL blaVIM, blaBIC, blaKPC, and blaSIM resistance genes and bacteria strains.

Detection of blaKPC and blaNDM Genes from Gram-Negative Rod Bacteria Isolated from a General Hospital in Gyeongnam (경남지역 종합병원에서 분리된 그람음성막대균으로부터 blaKPC 및 blaNDM 유전자 검출)

  • Yang, Byoung Seon;Park, Ji Ae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • This study investigated the use of real-time PCR melting curves for the diagnosis of blaKPC and blaNDM genes among the most frequently detected carbapenemase-producing Enterobacteriaceae in Korea. As a means of addressing the shortcomings of phenotype tests and conventional PCR. The modified Hodge test confirmed positivity in 25 of 35 strains, and carbapenemase inhibition testing confirmed positivity in 14 strains by meropenem+PBA or meropenem+EDTA. PCR analysis showed amplification products in 25 strains of Klebsiella pneumoniae carbapenemases (KPC), 10 of K. pneumoniae, 5 of E. coli, 5 of A. baumannii, 4 of P. aeruginosa, and 1 of P. putida. New Delhi metallo β-lactamase (NDM) identified amplification products in 8 strains, that is, 2 K. pneumoniae, 3 E. coli, 1 P. aeruginosa, 1 E. cloacae, and 1 P. retgeri strains. Real-time PCR melting curve analysis confirmed amplification in 25 strains of KPC and 8 strains of NDM, and these results were 100% consistent with PCR results. In conclusion, our findings suggest early diagnosis of carbapenem resistant Enterobacteriaceae by real-time PCR offers a potential means of antibacterial management that can prevent and control nosocomial infection spread.

Epidemiological Study of KPC-2 Producing Klebsiella pneumoniae Isolated in Daejeon During a 4-Year Period (최근 4년간 대전지역에서 분리된 KPC-2 생성 Klebsiella pneumoniae의 역학적 연구)

  • Hye Hyun, Cho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • The emergence and dissemination of carbapenemase-producing Enterobacteriaceae (CPE), particularly the Klebsiella pneumoniae carbapenemase-2 (KPC-2) producing Klebsiella pneumoniae, has been rapidly increasing worldwide and is becoming a serious public health threat. Since the epidemiology and characteristics of these KPC-2-producing K. pneumoniae vary according to the region and period under consideration, this study investigated the prevalence of carbapenemases and the epidemiological relationship of 78 carbapenem-resistant K. pneumoniae (CRKP) isolated from a tertiary hospital in Daejeon, from March 2017 to December 2020. The antimicrobial susceptibility tests were identified using the disk-diffusion method. PCR and DNA sequencing were used to determine the carbapenemase genes. In addition, molecular epidemiology was performed by multilocus sequence typing (MLST). Among the 78 CRKP isolates, 35 isolates (44.9%) were carbapenemase-producing K. pneumoniae (CPKP) and the major carbapenemase type was KPC-2 (30 isolates, 85.7%). The New Delhi metallo-enzyme-1 (NDM-1) and NDM-5 were identified in 4 isolates (11.4%) and 1 isolate (2.9%), respectively. Multilocus sequence typing (MLST) analysis showed 10 sequence types (STs) and the most prevalent ST was ST307 (51.4%, 18/35). All the ST307 isolates were KPC-2-producing K. pneumoniae and were multidrug-resistant (MDR). In addition, ST307 has gradually emerged during a four-year period. These findings indicate that continuous monitoring and proper infection control are needed to prevent the spread of KPC-2-producing K. pneumoniae ST307.

An Analysis of the Antibiotic Resistance Genes of Multi-Drug Resistant (MDR) Acinetobacter baumannii (다제내성 Acinetobacter baumannii 의 항생제 내성 유전자 분석)

  • Lim, Jina;Lee, Gyusang;Choi, Yeonim;Kim, Jongbae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.217-224
    • /
    • 2016
  • Acinetobacter baumannii (A. baumannii) is prevalent in hospital environments and is an important opportunistic pathogen of nosocomial infection. It is known that this pathogen cause herd infection in hospitals, and the mortality rate is remarkably higher for patients infected with this pathogen and already have other underlying diseases. Herein, we investigated the antibiotic resistance rate and the type of resistance genes in 85 isolates of multi-drug resistant A. baumannii from the samples commissioned to laboratory medicine in two university hospitals-in hospital A and hospital B-located in Cheonan and Chungcheong provinces, respectively, in Korea. As a result, $bla_{OXA-23-like}$ and $bla_{OXA-51-like}$ were detected in 82 stains (96.5%). These 82 strains of $bla_{OXA-23-like}$ producing A. baumannii were confirmed with the ISAba1 gene found at the top of the $bla_{OXA-23-like}$ genes by PCR, inducing the resistance against carbapenemase. The armA, AME gene that induces the resistance against aminoglycoside was detected in 34 strains out of 38 strains from Hospital A (89.5%), and in 40 strains out of 47 strains from Hospital B (85.1%), while AMEs were found in 33 strains out of 38 strains from Hospital A (70.2%) and in 44 strains out of 47 strains in Hospital B (93.6%). Therefore, it was found that most multi-drug resistant A. baumannii from the Cheonan area expressed both acethyltransferase and adenyltransferase. This study investigated the multi-drug resistant A. baumannii isolated from Cheonan and Chungcheong provinces in Korea, and it is thought that the results of the study can be utilized as the basic information to cure multi-drug resistant A. baumannii infections and to prevent the spread of drug resistance.