• 제목/요약/키워드: Carath$\'{e}$odory function.

검색결과 13건 처리시간 0.017초

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho;Park, Kisoeb
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1805-1821
    • /
    • 2016
  • In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

EXISTENCE OF WEAK SOLUTIONS TO A CLASS OF SCHRÖDINGER TYPE EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN

  • Kim, Jae-Myoung;Kim, Yun-Ho;Lee, Jongrak
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1529-1560
    • /
    • 2019
  • We are concerned with the following elliptic equations: $$(-{\Delta})^s_pu+V (x){\mid}u{\mid}^{p-2}u={\lambda}g(x,u){\text{ in }}{\mathbb{R}}^N$$, where $(-{\Delta})_p^s$ is the fractional p-Laplacian operator with 0 < s < 1 < p < $+{\infty}$, sp < N, the potential function $V:{\mathbb{R}}^N{\rightarrow}(0,{\infty})$ is a continuous potential function, and $g:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ satisfies a $Carath{\acute{e}}odory$ condition. We show the existence of at least one weak solution for the problem above without the Ambrosetti and Rabinowitz condition. Moreover, we give a positive interval of the parameter ${\lambda}$ for which the problem admits at least one nontrivial weak solution when the nonlinearity g has the subcritical growth condition.

SYMMETRIC SOLUTIONS FOR A FOURTH-ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL $p$-LAPLACIAN AT RESONANCE

  • Yang, Aijun;Wang, Helin
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.161-171
    • /
    • 2012
  • We consider the fourth-order differential equation with one-dimensional $p$-Laplacian (${\phi}_p(x^{\prime\prime}(t)))^{\prime\prime}=f(t,x(t),x^{\prime}(t),x^{\prime\prime}(t)$) a.e. $t{\in}[0,1]$, subject to the boundary conditions $x^{\prime\prime}}(0)=0$, $({\phi}_p(x^{\prime\prime}(t)))^{\prime}{\mid}_{t=0}=0$, $x(0)={\sum}_{i=1}^n{\mu}_ix({\xi}_i)$, $x(t)=x(1-t)$, $t{\in}[0,1]$, where ${\phi}_p(s)={\mid}s{\mid}^{p-2}s$, $p$ > 1, 0 < ${\xi}_1$ < ${\xi}_2$ < ${\cdots}$ < ${\xi}_n$ < $\frac{1}{2}$, ${\mu}_i{\in}\mathbb{R}$, $i=1$, 2, ${\cdots}$, $n$, ${\sum}_{i=1}^n{\mu}_i=1$ and $f:[0,1]{\times}\mathbb{R}^3{\rightarrow}\mathbb{R}$ is a $L^1$-Carath$\acute{e}$odory function with $f(t,u,v,w)=f(1-t,u,-v,w)$ for $(t,u,v,w){\in}[0,1]{\times}\mathbb{R}^3$. We obtain the existence of at least one nonconstant symmetric solution by applying an extension of Mawhin's continuation theorem due to Ge. Furthermore, an example is given to illustrate the results.