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SYMMETRIC SOLUTIONS FOR A FOURTH-ORDER

MULTI-POINT BOUNDARY VALUE PROBLEMS WITH

ONE-DIMENSIONAL p-LAPLACIAN AT RESONANCE†

AIJUN YANG AND HELIN WANG∗

Abstract. We consider the fourth-order differential equation with one-
dimensional p-Laplacian (φp(x′′(t)))′′ = f(t, x(t), x′(t), x′′(t)) a.e. t ∈ [0, 1],
subject to the boundary conditions x′′(0) = 0, (φp(x′′(t)))′|t=0 = 0,
x(0) =

∑n
i=1 µix(ξi), x(t) = x(1 − t), t ∈ [0, 1], where φp(s) = |s|p−2s,

p > 1, 0 < ξ1 < ξ2 < · · · < ξn < 1
2
, µi ∈ R, i = 1, 2, · · · , n, ∑n

i=1 µi = 1

and f : [0, 1]× R3 → R is a L1-Carathéodory function with f(t, u, v, w) =
f(1 − t, u,−v, w) for (t, u, v, w) ∈ [0, 1] × R3. We obtain the existence of
at least one nonconstant symmetric solution by applying an extension of
Mawhin’s continuation theorem due to Ge. Furthermore, an example is
given to illustrate the results.

AMS Mathematics Subject Classification : 34B18, 34B27.
Key words and phrases : Multi-point boundary value problem, Resonance,
Symmetric solution, p-Laplacian.

1. Introduction

In this paper, we are interested in the fourth-order symmetric multi-point
BVP with the one-dimensional p-Laplacian

(φp(x
′′(t)))′′ = f(t, x(t), x′(t), x′′(t)), a.e. t ∈ [0, 1], (1.1)

x′′(0) = 0, (φp(x
′′(t)))′|t=0 = 0, x(0) =

n∑

i=1

µix(ξi), (1.2)

x(t) = x(1− t) a.e. t ∈ [0, 1], (1.3)
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where φp(s) = |s|p−2s, p > 1, 0 < ξ1 < ξ2 < · · · < ξn < 1
2 , µi ∈ R,

i = 1, 2, · · · , n, with
n∑

i=1

µi = 1. (1.4)

Throughout we assume:
(A1) f : [0, 1]× R3 → R is symmetric on [0, 1], i.e.

f(t, u, v, w) = f(1− t, u,−v, w) for t ∈ [0, 1]

and satisfies the L1-Carathéodory conditions, and f(t, b, 0, 0) 6≡ 0, ∀b ∈ R;
(A2)

∑n
i=1 µiξi(2q − (2ξi)

2q−1) 6= 0.
Due to the condition (1.4), the differential operator on the left side of (1.1) is

not invertible. In the literature, BVPs of this type are referred to as problems
at resonance.

Boundary value problems with a p-Laplacian have received a lot of attention
in recent years. They often occur in the study of the n-dimensional p-Laplacian
equation, non-Newtonian fluid theory and the turbulent flow of a gas in porous
medium. Many works have been carried out to discuss the existence of solu-
tions or positive solutions, multiple solutions for the local or nonlocal BVPs
[3,5,14,16,19].

Multi-point BVPs of ordinary differential equations arise in a variety of differ-
ent areas of Applied Mathematics and Physics. The study of multi-point BVPs
for linear second-order ordinary differential equations was initiated by Il’in and
Moiseev [6]. Since then many authors have studied more nonlinear multi-point
BVPs [10-19]. The methods used therein mainly depend on the degree theory,
fixed-point theorems, upper and lower techniques, and monotone iteration.

Recently, there is an increasing interest in considering some higher order
BVPs, we refer the readers to [3-5,19] for details. However, as far as we know,
the study of symmetric solutions for fourth-order p-Laplacian BVPs has rarely
appeared.

Motivated by the papers mentioned above, we aim at studying the BVPs
(1.1)-(1.3) at resonance. Due to the fact that the classical Mawhin’s continua-
tion theorem can’t be directly used to discuss the BVP with nonlinear differential
operator, in this paper, we investigate the multi-point BVP (1.1)-(1.3) by apply-
ing an extension of Mawhin’s continuation theorem due to Ge [2]. Furthermore,
an example is given to illustrate the result.

2. Preliminaries

For the convenience of readers, we present here some background definitions
and lemmas.

Definition 2.1. f : [0, 1]×R3 → R is called a L1-Carathéodory function, if the
following conditions hold:
(B1) for each (u, v, w) ∈ R3, the mapping t 7→ f(t, u, v, w) is Lebesgue measur-
able;
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(B2) for a.e. t ∈ [0, 1], the mapping (u, v, w) 7→ f(t, u, v, w) is continuous on R3;
(B3) for each r > 0, there exists αr ∈ L1[0, 1] such that for a.e. t ∈ [0, 1] and
every (u, v, w) such that max{|u|, |v|, |w|} ≤ r, we have |f(t, u, v, w)| ≤ αr(t).

Proposition 2.1 ([7]). φp satisfies the following properties
(C1) φp is continuous, monotonically increasing and invertible.

Moreover, φ−1
p = φq with p > 1 a real constant satisfying 1

p + 1
q = 1;

(C2) for ∀u, v ≥ 0, φp(u+ v) ≤ φp(u) + φp(v), if 1 < p < 2;
φp(u+ v) ≤ 2p−2(φp(u) + φp(v)), if p ≥ 2.

Definition 2.2 ([2]). Let X and Z be two Banach spaces with norms || · ||X
and || · ||Z , respectively. A continuous operator M : domM → Z is said to be
quasi-linear if
(D1) ImM is a closed subset of Z;
(D2) kerM = {x ∈ domM : Mx = 0} is linearly homeomorphic to Rn, n < ∞.

Definition 2.3 ([7]). Let X be a Banach spaces and X1 ⊂ X a subspace. A
linear operator P : X → X1 is said to be a projector provided that P 2 = P .
The operator Q : X → X1 is said to be a semi-projector provided that Q2 = Q
and Q(λx) = λQx for x ∈ X, λ ∈ R.

Let X1 = kerM and X2 be the complementary space of X1 in X, then
X = X1 ⊕X2. On the other hand, suppose Z1 is a subspace of Z and Z2 is the
complementary of Z1 in Z, so that Z = Z1⊕Z2. Let P : X → X1 be a projector
and Q : Z → Z1 be a semi-projector, and Ω ⊂ X an open and bounded set with
the origin θ ∈ Ω, where θ is the origin of a linear space.

Suppose Nλ : Ω → Z, λ ∈ [0, 1] is a continuous operator. Denote N1 by N .
Let

∑
λ =

{
x ∈ Ω : Mx = Nλx

}
.

Definition 2.4 ([2]). Nλ is said to be M -compact in Ω if
(D3) there is a vector subspace Z1 of Z with dimZ1= dimX1 and an operator
R : Ω× [0, 1] → X2 continuous and compact such that for λ ∈ [0, 1],

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Z, (2.1)

QNλx = 0, λ ∈ (0, 1) ⇐⇒ QNx = 0, (2.2)

R(·, 0) is the zero operator and

R(·, λ)|∑
λ
= (I − P )|∑

λ
, (2.3)

M [P +R(·, λ)] = (I −Q)Nλ. (2.4)

Theorem 2.1 ([2]). Let X and Z be two Banach spaces with norms || · ||X and
|| · ||Z , respectively, and Ω ⊂ X an open and bounded set. Suppose M : domM →
Z is a quasi-linear operator and Nλ : Ω → Z, λ ∈ [0, 1] is M -compact. In
addition, if
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(E1) Mx 6= Nλx, for λ ∈ (0, 1), x ∈ domM ∩ ∂Ω;
(E2) deg{JQN,Ω ∩ kerM, 0} 6= 0,
where N = N1 and J : Z1 → X1 is a homeomorphism with J(θ) = θ, then the
abstract equation Mx = Nx has at least one solution in Ω.

3. Related lemmas

Let AC[0, 1] denotes the space of absolutely continuous functions on the in-
terval [0, 1]. We work in the spaces

X =
{
x ∈ C2[0, 1] : x(t) = x(1− t) for t ∈ [0, 1] and

(φp(x
′′(·)))′ ∈ AC[0, 1], (φp(x

′′(·)))′′ ∈ L1[0, 1]
}

with the norm ||x||X = max{||x||∞, ||x′||∞, ||x′′||∞}, where ||x||∞ = sup
t∈[0,1]

|x(t)|
and Z = {z ∈ L1[0, 1] : z(t) = z(1− t), t ∈ [0, 1]} with the usual Lebesgue norm
denoted by || · ||1.
Define M : domM → Z by Mx(t) = (φp(x

′′(t)))′′ with

domM =
{
x ∈ X : x′′(0) = 0, (φp(x

′′(t)))′ |t=0 = 0, x(0) =
∑n

i=1
µix(ξi)

}
.

For any open and bounded Ω ⊂ X, we define Nλ : Ω → Z by Nλx(t) =
λf(t, x(t), x′(t), x′′(t)), t ∈ [0, 1]. Then the BVP (1.1)-(1.3) can be written as
Mx = Nx.

Lemma 3.1. The operator M : domM → Z is quasi-linear.

Proof. It is clear that X1 = kerM = {x ∈domM : x = a ∈ R}.
Let x ∈ domM and consider the equation (φp(x

′′(t)))′′ = z(t) subject to (1.2)
and (1.3), then z ∈ Z. It follows from (1.2) and the symmetric conditions that

x′(t) = −
∫ 1

2

t

φq

(∫ s

0

(s− τ)z(τ)dτ

)
ds, (3.1)

and then

x(t) = −
∫ t

0

∫ 1
2

s

φq

(∫ τ

0

(τ − k)z(k)dk

)
dτds+ x(0). (3.2)

In view of (1.3) and
n∑

i=1

µi = 1, we get

n∑

i=1

µi

∫ ξi

0

∫ 1
2

t

φq

(∫ s

0

(s− τ)z(τ)dτ

)
dsdt = 0. (3.3)

Thus,

ImM ⊂
{
z ∈ Z :

n∑

i=1

µi

∫ ξi

0

∫ 1
2

t

φq

(∫ s

0

(s− τ)z(τ)dτ

)
dsdt = 0

}
. (3.4)
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Conversely, if (3.3) holds for z ∈ Z, we take x ∈ dom M as given by (3.2) and
establish that it is symmetric and (φp(x

′′(·)))′ is absolutely continuous along
with derivative, then (φp(x

′′(t)))′′ = z(t) for t ∈ [0, 1] and (1.2) and (1.3) are
satisfied. Together with (3.4), we have

ImM =

{
z ∈ Z :

n∑

i=1

µi

∫ ξi

0

∫ 1
2

t

φq

(∫ s

0

(s− τ)z(τ)dτ

)
dsdt = 0

}
. (3.5)

So, dimkerM = 1 < ∞, ImM ⊂ Z is closed. Therefore, M is a quasi-linear
operator. ¤

Lemma 3.2. The operator Nλ : Ω → Z is M -compact in Ω.

Proof. We recall the condition (A2) and define the continuous operator Q : Z →
Z1 by

Qz(t) =2φp




22qq(2q − 1)
n∑

i=1

µiξi (2q − (2ξi)2q−1)


φp×

(
n∑

i=1

µi

∫ ξi

0

∫ 1
2

t

φq

(∫ s

0

(s− τ)z(τ)dτ

)
dsdt

)
.

(3.6)

It is easy to check that Q2z = Qz and Q(λz) = λQz for z ∈ Z, λ ∈ R, that is,
Q is a semi-projector and dimX1=dimZ1=1. In addition, (3.5) and (3.6) imply
that ImM=kerQ.

Let Ω ⊂ X be an open and bounded subset with θ ∈ Ω. For ∀x ∈ Ω, we have
Q[(I − Q)Nλ(x)] = 0. So (I − Q)Nλ(x) ∈ kerQ = ImM . For ∀z ∈ ImM , one
gets Qz = 0. Thus, z = z −Qz = (I −Q)z ∈ (I −Q)Z. Therefore, (2.1) holds.
Obviously, (2.2) is satisfied.
Define R : Ω× [0, 1] → X2 by

R(x, λ)(t) = −
∫ t

0

∫ 1
2

s
φq

(∫ τ

0
(τ − k)λ

(
f(k, x(k), x′(k), x′′(k))− (Qf)(k)

)
dk

)
dτds, (3.7)

where X2 is the complementary space of X1 = kerM in X. Clearly, R(·, 0) = θ.
Now we prove that R : Ω× [0, 1] → X2 is compact and continuous.

We first show that R is relatively compact for ∀λ ∈ [0, 1]. Since Ω ⊂ X is
a bounded set, then there exists r > 0 such that Ω ⊂ {x ∈ X : ||x||X ≤ r}.
Because the function f satisfies the L1-Carathéodory conditions, there exists
αr ∈ L1[0, 1] such that for a.e. t ∈ [0, 1], |f(t, x(t), x′(t), x′′(t))| ≤ αr(t) for
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x ∈ Ω. Then for any x ∈ Ω, λ ∈ [0, 1], we obtain

|R(x, λ)(t)| ≤
∫ t

0

∣∣∣∣∣
∫ 1

2

s

φq

(∫ τ

0

(τ − k)λ(f(k, x(k), x′(k), x′′(k))− (Qf)(k))dk

)
dτ

∣∣∣∣∣ ds

≤
∫ 1

0

φq

(∫ 1

0

|αr(s)|ds+
∫ 1

0

|(Qf)(s)|ds
)
dt

=φq(||αr||1 + ||Qf ||1) := L,

|R′(x, λ)(t)| =
∣∣∣∣∣
∫ 1

2

t

φq

(∫ s

0

(s− τ)λ(f(τ, x(τ), x′(τ), x′′(τ))− (Qf)(τ))dτ

)
ds

∣∣∣∣∣

≤
∫ 1

0

φq

(∫ 1

0

|αr(s)|ds+
∫ 1

0

|(Qf)(s)|ds
)
dt = L,

|R′′(x, λ)(t)| =
∣∣∣∣φq

(∫ t

0

(t− s)λ(f(s, x(s), x′(s), x′′(s))− (Qf)(s))ds

)∣∣∣∣

≤φq

(∫ 1

0

|αr(s)|ds+
∫ 1

0

|(Qf)(s)|ds
)

=φq(||αr||1 + ||Qf ||1) = L,

that is, R(·, λ)Ω is uniformly bounded. Meanwhile, for ∀t1, t2 ∈ [0, 1],

|R(x, λ)(t2)−R(x, λ)(t1)| =
∣∣∣∣
∫ t2

t1

R′(x, λ)(s)ds

∣∣∣∣ ≤ L|t2 − t1| → 0, as |t2 − t1| → 0.

Similarly,

∣∣R(x, λ)′(t2)−R(x, λ)′(t1)
∣∣ =

∣∣∣∣
∫ t2

t1

R′′(x, λ)(s)ds

∣∣∣∣ ≤ L|t2 − t1| → 0, as |t2 − t1| → 0.

Also,

|φp(R
′′(x, λ)(t2))− φp(R

′′(x, λ)(t1))|

=
∣∣∣
∫ t2

0

(t2 − s)λ(f(s, x(s), x′(s), x′′(s))− (Qf)(s))ds

−
∫ t1

0

(t1 − s)λ(f(s, x(s), x′(s), x′′(s))− (Qf)(s))ds
∣∣∣

≤
∣∣∣
∫ t2

0

(t2 − t1)λ(f(s, x(s), x
′(s), x′′(s))− (Qf)(s))ds

∣∣∣

+
∣∣∣
∫ t2

t1

(t1 − s)λ(f(s, x(s), x′(s), x′′(s))− (Qf)(s))ds
∣∣∣

≤
∫ 1

0

(αr(s) + |(Qf)(s)|) ds · |t2 − t1|+
∫ t2

t1

(t1 − s) (αr(s) + |(Qf)(s)|) ds,

≤ (||αr||1 + ||Qf ||1)|t2 − t1|+
∫ t2

t1

(αr(s) + |(Qf)(s)|)ds → 0 as |t2 − t1| → 0.
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In view of the continuity of φp, we have |R′′(x, λ)(t2)−R′′(x, λ)(t1)| → 0, as |t2−
t1| → 0. So, R(·, λ)Ω is equicontinuous on [0,1]. Thus, Arzela-Ascoli Theorem
implies that R(·, λ)Ω is relatively compact.

Since f is a L1-Carathéodory function, the continuity of R on Ω follows from
the Lebesgue dominated convergence theorem.

Define P : X → X1 by (Px)(t) = x(0) for t ∈ [0, 1]. ∀x ∈ ∑
λ, we have

λf(t, x(t), x′(t), x′′(t)) = (φp(x
′′(t)))′′ ∈ ImM = kerQ. So

R(x, λ)(t) =−
∫ t

0

∫ 1
2

s

φq

(∫ τ

0

(τ − k)λ
(
f(k, x(k), x′(k), x′′(k))− (Qf)(k)

)
dk

)
dτds

=−
∫ t

0

∫ 1
2

s

φq

(∫ τ

0

(τ − k)(φp(x
′′(k)))′′dk

)
dτds

=

∫ t

0

x′(s)ds = x(t)− x(0) = [(I − P )x](t),

which implies (2.3). ∀ x ∈ Ω, we have

M [Px+R(x, λ)](t)

=M

[
x(0)−

∫ t

0

∫ 1
2

s

φq

(∫ τ

0

(τ − k)λ(f(k, x(k), x′(k), x′′(k))− (Qf)(k))dk

)
dτds

]

=λ[f(t, x(t), x′(t), x′′(t))−Qf(t, x(t), x′(t), x′′(t))]

=[((I −Q)Nλ)(x)](t),

which yields (2.4). Therefore, Nλ is M -compact in Ω. ¤

4. Main results

Theorem 4.1. Suppose that
(H1) there exists a constant A > 0 such that for ∀x ∈domM\ kerM satisfying
|x(t)| > A for all t ∈ [0, 1], we have QNx 6= 0;
(H2) there exist functions α, β, γ, ρ ∈ L1[0, 1] such that for ∀(x, y, z) ∈ R3 and
a.e. t ∈ [0, 1], we have

|f(t, x, y, z)| ≤ α(t)|x|p−1 + β(t)|y|p−1 + γ(t)|z|p−1 + ρ(t), (4.1)

we denote α1 = ||α||1, β1 = ||β||1, γ1 = ||γ||1, ρ1 = ||ρ||1;
(H3) there exist a constant B > 0 such that for ∀b ∈ R with |b| > B, we have
either

b · 22qq(2q − 1)
n∑

i=1
µiξi(2q − (2ξi)2q−1)

·
n∑

i=1

µi

∫ ξi

0

∫ 1
2

t
φq

(∫ s

0
(s− τ)f(τ, b, 0, 0)dτ

)
dsdt < 0 (4.2)

or

b · 22qq(2q − 1)
n∑

i=1
µiξi(2q − (2ξi)2q−1)

·
n∑

i=1

µi

∫ ξi

0

∫ 1
2

t
φq

(∫ s

0
(s− τ)f(τ, b, 0, 0)dτ

)
dsdt > 0; (4.3)

(H4)

2q−3(α1 + β1 + 2p−1γ1)
q−1 < 1 for p < 2, (4.4)
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1

2
(2p−2α1 + β1 + 2p−1γ1)

q−1 < 1 for p ≥ 2. (4.5)

Then the BVP(1.1)-(1.3) has at least one nonconstant symmetric solution.

Lemma 4.1. U1 = {x ∈ domM : Mx = Nλx for some λ ∈ (0, 1)} is bounded.

Proof. For ∀x ∈ U1, we have Nλx = Mx ∈ ImM = kerQ and then QNx = 0.
It follows from (H1) that there exists t0 ∈ [0, 1] such that |x(t0)| ≤ A. Now,

|x(t)| = |x(t0) +
∫ t

t0
x′(s)ds| ≤ A+ ||x′||∞, that is, ||x||∞ ≤ A+ ||x′||∞. Since x

is symmetric on [0, 1], then

|x′(t)| = |x′(
1

2
) +

∫ t

1
2

x′′(s)ds| = |
∫ t

1
2

x′′(s)ds| ≤ 1

2
||x′′||∞.

that is, ||x′||∞ ≤ 1
2 ||x′′||∞. And then ||x||∞ ≤ A+ 1

2 ||x′′||∞.
Also,

x′′(t) = φq(

∫ t

0

(t− s)λf(s, x(s), x′(s), x′′(s))ds).

(I) For 1 < p < 2, from (H2) and Proposition 2.1, one gets

||x′′||∞ = sup
t∈[0,1]

|φq(

∫ t

0

(t− s)λf(s, x(s), x′(s), x′′(s))ds)|

≤φq(

∫ 1

0

(α(t)|x(t)|p−1 + β(t)|x′(t)|p−1 + γ(t)|x′′(t)|p−1 + ρ(t))dt)

≤φq[α1||x||p−1
∞ + β1||x′||p−1

∞ + γ1||x′′||p−1
∞ + ρ1]

≤φq[α1(A
p−1 +

1

2p−1
||x′′||p−1

∞ ) +
1

2p−1
β1||x′′||p−1

∞ + γ1||x′′||p−1
∞ + ρ1]

=φq[(α1 + β1 + 2p−1γ1)(
||x′′||∞

2
)p−1 + (α1A

p−1 + ρ1)]

≤2q−3(α1 + β1 + 2p−1γ1)
q−1||x′′||∞ + 2q−2(α1A

p−1 + ρ1)
q−1.

Noticing (H4), one arrives at

||x′′||∞ ≤ 2q−2(α1A
p−1 + ρ1)

q−1

1− 2q−3(α1 + β1 + 2p−1γ1)q−1
:= L1, (4.6)

which yields ||x′||∞ ≤ 1
2L1 and ||x||∞ ≤ A+ 1

2L1. Let L2 = max{L1, A+ 1
2L1}.
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(II) For p ≥ 2, similarly, we have

||x′′||∞ = sup
t∈[0,1]

|φq(

∫ t

0

(t− s)λf(s, x(s), x′(s), x′′(s))ds)|

≤φq[α1||x||p−1
∞ + β1||x′||p−1

∞ + γ1||x′′||p−1
∞ + ρ1]

≤φq[2
p−2α1(A

p−1 +
1

2p−1
||x′′||p−1

∞ ) +
1

2p−1
β1||x′′||p−1

∞ + ||x′′||p−1
∞ + ρ1]

=φq[(2
p−2α1 + β1 + 2p−1γ1)(

||x′′||∞
2

)p−1 + (2p−2α1A
p−1 + ρ1)]

≤1

2
(2p−2α1 + β1 + 2p−1γ1)

q−1||x′′||∞ + (2p−2α1A
p−1 + ρ1)

q−1.

From (H4), we have

||x′′||∞ ≤ (2p−2α1A
p−1 + ρ1)

q−1

1− 1
2 (2

p−2α1 + β1 + 2p−1γ1)q−1||x′′||∞
:= M1,

which leads to ||x′||∞ ≤ 1
2M1 and ||x||∞ ≤ A+ 1

2M1.

Let M2 = max{M1, A+ 1
2M1}.

Thus, ||x||X ≤ max{L2,M2}, i.e. U1 is bounded. ¤

Lemma 4.2. If U2 = {x ∈ kerM : −λx+ (1− λ)JQNx = 0, λ ∈ [0, 1]}, where
J : ImQ → kerM is a homomorphism, then U2 is bounded.

Proof. Define J : ImQ → kerM by J(b) = b. Then for ∀b ∈ U2,

λb =2(1− λ)φp




22qq(2q − 1)
n∑

i=1

µiξi(2q − (2ξi)2q−1)


φp×

(
n∑

i=1

µi

∫ ξi

0

∫ 1
2

t

φq

(∫ s

0

(s− τ)f(τ, b, 0, 0)dτ

)
dsdt

)
.

If λ = 1, then b = 0. In the case λ ∈ [0, 1), if |b| > B, then by (4.2), we have

0 ≤ λb2 =2(1− λ)bφp




22qq(2q − 1)
n∑

i=1

µiξi(2q − (2ξi)2q−1)


φp×

(
n∑

i=1

µi

∫ ξi

0

∫ 1
2

t

φq

(∫ s

0

(s− τ)f(τ, b, 0, 0)dτ

)
dsdt

)
< 0,

which is a contradiction. Thus, ||x||X = |b| ≤ B for ∀x ∈ U2, that is, U2 is
bounded. ¤

Proof of Theorem 4.1. Let U = {x ∈ domM : ||x||X < max{L2,M2, B} +
1}, then U ⊃ U1 ∪ U2 be a bounded and open set, then from Lemmas 4.1 and
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4.2, we have
(i) Mx 6= Nλx for ∀(x, λ) ∈ [ domM ∩ ∂U ]× (0, 1);
(ii) Let H(x, λ) = −λx + (1 − λ)JQNx, J is defined as in Lemma 4.2. and we
can see that H(x, λ) 6= 0, ∀x ∈ domM ∩ ∂U . Therefore,

deg {JQN |U∩kerM , U ∩ kerM, 0} =deg {H(·, 0), U ∩ kerM, 0}
=deg {H(·, 1), U ∩ kerM, 0}
=deg {−I, U ∩ kerM, 0}
6= 0.

Theorem 2.1 yields that Mx = Nx has at least one symmetric solution x∗ ∈
domM ∩ U . Observe that x∗(t) is not a constant. Otherwise, suppose x∗ ≡ 0,
then from (1.1) we have f(t, b, 0, 0) ≡ 0, which contradicts (A1). The proof is
completed. ¤

Remark 4.1. When the second part of condition (H3) holds, if we choose

Ũ2 = {x ∈ kerM : λx + (1 − λ)JQNx = 0, λ ∈ [0, 1]} and take homomorphism

H̃(x, λ) = λx + (1 − λ)JQNx. Then by a similar argument, we can complete
the proof.

Example 4.1. Consider





(φ3(x
′′(t)))′′ = f(t, x(t), x′(t), x′′(t)), a.e. t ∈ [0, 1],

x′′(0) = 0, (φp(x
′′(0)))′ = 0

x(0) = 2x(
1

6
)− x(

1

4
), x(t) = x(1− t).

(4.7)

Corresponding to the BVP (1.1)-(1.3), we have p = 3, q = 3
2 , µ1 = 2, µ2 = −1,

ξ1 = 1
6 , ξ2 = 1

4 and

f(t, u, v, w) = 2t(1− t)et(1−t) +
1

2
t(1− t)u2 +

(
t− t2 +

1

12

)
v2 + t2(1− t)2w2.

We can easily verify that (A1)-(A2) hold. Let α(t) = 1
2 t(1−t), β(t) = t−t2+ 1

12 ,

γ(t) = t2(1−t)2, ρ(t) = 2t(1−t)et(1−t), then α1 = 1
12 , β1 = 1

4 , γ1 = 1
30 . Also, we

can check that (H1)-(H4) are all satisfied. Thus, BVP (4.7) has a nonconstant
symmetric solution, by using Theorem 4.1.
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