• 제목/요약/키워드: Car tire model

검색결과 52건 처리시간 0.031초

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

승용차 조향계의 시미해석 프로그램 개발 (Shimmy Analysis Program Development of Steering System for a Passenger Car)

  • 박상규;송상기;이용호;송각기
    • 동력기계공학회지
    • /
    • 제4권2호
    • /
    • pp.65-70
    • /
    • 2000
  • The shimmy phenomenon, or the radial vibration of steering wheel, happens frequently at a high speed, complicated with suspension system, steering system, vehicle body, engine, transmission and tire. In this study, the suspension system and steering system are modeled by the reference of vehicle body design coordinates(T.L.H), the coordinate system usually used by passenger car maker. In addition, the theoretical results from numerical method have been investigated and compared with the experimental ones by the correlating analysis between the tire and sub-system. The steering and suspension system modeled for the numerical analysis are both independent type. This study developed an analysis program which could forecast the shimmy level in advance by the variation of properties in each system and the change in design of new model.

  • PDF

타이어의 강성계수에 관한 고찰 (A Study on the Stiffness of Tire)

  • 이상선;반재삼;김항우;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측 (CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre)

  • 김성태;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

슬립율 제어를 위한 자동차용 유압 조절시스템의 최적 설계에 관한 연구 (A Study on Optimal Design of Automotive Hydraulic Control System for Slip Ratio Control)

  • 김대원;김진한;최석창
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.41-50
    • /
    • 1998
  • In this study, to investigate a characteristics of slip ratio control of H.C.U for ABS, half car model tester were developed and a new H.C.U. was compactly designed comparing to the commercical H.C.U. for ABS. In half car model tester, variable inertia wheel has been used to load the car weights and braking forces according to the road surface conditions which were realized by pneumatic cylinder. And solenoid valves using P.W.M. (Pulse Width Modulation) method were installed in the new H.C.U The slip ratio characteristics of tire had been measured using half car model tester and the results were used in the control simulation for a new H.C.U.

  • PDF

TIRE MESH 모델을 활용한 랙추력 추정법 개발 (Rack Force Estimation Method using a Tire Mesh Model)

  • 김민준;장세현;이병림;박영대;조현석
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.130-135
    • /
    • 2014
  • In this paper, a new estimation method is proposed to calculate steering rack axial force using a 3 dimensional tire mesh model when a car is standing on the road. This model is established by considering changes of camber angle and contact patch between the tires and the ground according to steering angle. The steering rack bar axial force is estimated based on the static equilibrium equations of forces and moments. A tire friction force is supposed to act on the center point of the contact patch, and the proportional coefficient of friction depending on contact patch is suggested. Using the proposed estimation method, rack axial force sensitivity analysis is evaluated according to changes of suspension geometry. Then optimal motor power of Motor Driven Power Steering(MDPS) is evaluated using suggested rack forces.

승용차 타이어의 진동 특성에 관한 연구 (A study on the vibration characteristics of pssenger car radial tire)

  • 김병삼;이태근;양성모;정태진
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.76-83
    • /
    • 1993
  • The vibration characteristics of radial tire are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tielking method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure are determined experimentally by using the transfer function method. Results show that material property and wear are parameter for shifting of natural frequency and damping.

  • PDF

후륜 조향각 결정을 통한 통합 섀시 제어기의 성능 향상 (Performance Improvement of Integrated Chassis Control with Determination of Rear Wheel Steering Angle)

  • 임성진
    • 대한기계학회논문집A
    • /
    • 제41권2호
    • /
    • pp.111-119
    • /
    • 2017
  • 본 논문은 자세 제어 장치(ESC)와 후륜 조향 장치(RWS)를 장착한 통합 섀시 제어기의 성능을 향상시키기 위해 후륜 조향각을 결정하는 방법을 제안한다. 차량을 안정화시키기 위해 필요한 제어 요 모멘트는 자세 제어 장치와 후륜 조향 장치를 이용하여 만들어진다. 각 장치의 타이어 힘을 결정하기 위해 의사역행렬 제어할당 방법을 적용한다. 제어기의 성능을 향상시키기 위해 후륜 조향 장치의 조향각을 결정하는 데에 네 가지 방법을 적용한다. 차량 시뮬레이션 패키지인 CarSim에서 시뮬레이션을 수행하여 제안된 방법들이 통합 섀시 제어기의 성능을 향상시킬 수 있음을 검증한다.

CONTROL STRATEGY OF AN ACTIVE SUSPENSION FOR A HALF CAR MODEL WITH PREVIEW INFORMATION

  • CHO B.-K.;RYU G.;SONG S. J.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.243-249
    • /
    • 2005
  • To improve the ride comfort and handling characteristics of a vehicle, an active suspension which is controlled by external actuators can be used. An active suspension can control the vertical acceleration of a vehicle and the tire deflection to achieve the desired suspension goal. For this purpose, Model Predictive Control (MPC) scheme is applied with the assumption that the preview information of the oncoming road disturbance is available. The predictive control approach uses the output prediction to forecast the output over a time horizon and determines the future control over the horizon by minimizing the performance index. The developed method is applied to a half car model of four degrees-of-freedom and numerical simulations show that the MPC controller improves noticeably the ride qualities and handling performance of a vehicle.

자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법 (Numerical Method for Prediction of Air-pumping Noise by Car Tyre)

  • 김성태;정원태;정철웅;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.