• Title/Summary/Keyword: Capture Mechanism

Search Result 143, Processing Time 0.022 seconds

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Analytical Models of Beam-Column joints in a Unit Modular Frame (단위 모듈러 구조체의 보-기둥 접합부 해석 모델)

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.663-672
    • /
    • 2014
  • Recently, modular structural systems have been applicable to building construction since they can significantly reduce building construction time. They consists of several unit modular frames of which each beam-column joint employs an access hole for connecting unit modular frames. Their structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of a traditional steel moment-resisting system. In order to obtain the validation of this assumption, the cyclic characteristics of beam-column joints in a unit modular frame should be investigate. This study carried out finite element analyses(FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into partial moment connections. Also, this study develops a simple spring model for earthquake nonlinear analyses and suggests the Ramberg-Osgood hysteretic rule to capture the cyclic response of unit modular frames.

An Inverse Dynamic Model of Upper Limbs during Manual Wheelchair Propulsion (수동 휠체어 추진 중 상지 역동역학 모델)

  • Song, S.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2013
  • Manual wheelchair propulsion can lead to pain and injuries of users due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper limbs during manual wheelchair propulsion needs to be studied. A two dimensional inverse dynamic model of upper limbs was developed to compute the joint torque during manual wheelchair propulsion. The model was composed of three segments corresponding to upper arm, lower arm and hand. These segments connected in series by revolute joints constitute open chain mechanism in sagittal plane. The inverse dynamic method is based on Newton-Euler formalism. The model was applied to data collected in experiments. Kinematic data of upper limbs during wheelchair propulsion were obtained from three dimensional trajectories of markers collected by a motion capture system. Kinetic data as external forces applied on the hand were obtained from a dynamometer. The joint rotation angles and joint torques were computed using the inverse dynamic model. The developed model is for upper limbs biomechanics and can easily be extended to three dimensional dynamic model.

  • PDF

Discharge Equation Related to a Levee-Break for a Flood Hazard Map (홍수위험지도 작성을 위한 하천 제방 붕괴 유량공식 제안)

  • Lee, Khil-Ha;Kim, Sung-Wook;Choi, Bong-Hyuck
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.623-627
    • /
    • 2015
  • To compile a flood hazard map it is essential to identify the potential risk areas. A scenario-based numerical modeling approach is commonly used to build a flood hazard map in the case of a levee-break. The model parameters that capture peak discharge, including breach formation and progress, are important in the modeling method. In this study an earth-levee-break model is constructed under the assumption that the failure mechanism and hydraulic processes are identical for all levee-break river activities. Estimation of the hydrograph at the outlet as a function of time is highlighted. The constructed hydrograph can then serve as an upper boundary condition in running the flood routing model downstream, although flood routing is not considered in this study.

An Extension Technique of Comparative Analysis based on Qualitative Model (정성적 모델에 기초한 비교분석의 확장 기법)

  • Kim, Hyeon Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.51-60
    • /
    • 2006
  • The goal of qualitative analysis is to capture and formalize qualitative and intuitive knowledge about physical world. Qualitative reasoning has been successfully applied to electric and mechanical mechanism domains, in which most of reasoning has focused on simulation. This paper introduces a qualitative comparative analysis technique which predicts how a change in a given situation propagates. We developed a comparative analysis technique which extends previous research by including a reasoning technique about the relative rate of the change of a parameter. Previous research focuses only on the relative change of a parameter. Causal model for the given situation is generated from qualitative domain model. The propagation by the change in causal relations are traced by applying our comparative analysis. By providing explanation as well as prediction for the given change, our technique is expected to be used in design, diagnosis, intelligent tutoring system, environmental evaluation.

  • PDF

Preparation of Bi/Bi2MoO6 Plasmonic Photocatalyst with High Photocatalytic Activity Under Visible Light Irradiation

  • Zou, Chentao;Yang, Zhiyuan;Liang, Mengjun;He, Yunpeng;Yang, Yun;Yang, Shuijin
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850127.1-1850127.13
    • /
    • 2018
  • Bi metal deposited on $Bi_2MoO_6$ composite photocatalysts have been successfully synthesized via a simple reduction method at room temperature with using $NaBH_4$ as the reducing agent. The photocatalytic activity of the composite was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) solution under visible light. The rate constant of $Bi/Bi_2MoO_6$ composite to RhB is 10.8 times that of $Bi_2MoO_6$, and the degradation rate constant of BPA is 6.9 times of that of $Bi_2MoO_6$. Nitrogen absorption-desorption isotherm proved that the increase of specific surface area is one of the reasons for the improvement of photocatalytic degradation activity of $Bi/Bi_2MoO_6$ composites. The higher charge transfer efficiency of $Bi/Bi_2MoO_6$ is found through the characterization of the photocurrent and impedance, which are attributed to the surface plasmon resonance (SPR) effect produced by the introduction of the metal Bi monomer in the composite. Free radical capture experiments proved that cavitation is the main active species. Based on the above conclusions, a possible mechanism of photocatalytic degradation is proposed.

Numerical Analysis of the Beach Stabilization Effect of an Asymmetric Ripple Mat (왜도 된 연흔모양 매트의 해빈 안정화 효과 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.209-220
    • /
    • 2019
  • Even though the scale of hard structures for beach stabilization should carefully be determined such that these structures do not interrupt the great yearly circulation process of beach sediment in which the self-healing ability of natural beach takes places, massive hard structures such as the submerged breakwater of wide-width are frequently deployed as the beach stabilization measures. On this rationale, asymmetric ripple mat by Irie et al. (1994) can be the alternatives for beach stabilization due to its small scale to replace the preferred submerged breaker of wide-width. The effectiveness of asymmetric ripple mat is determined by how effectively the vortices enforced at the contraction part of flow area over the mat traps the sediment moving toward the offshore by the run-down. In order to verify this hypothesis, we carry out the numerical simulations based on the Navier-Stokes equation and the physically-based morphology model. Numerical results show that the asymmetric ripple mat effectively capture the sediment by forced vortex enforced at the apex of asymmetric ripple mat, and bring these trapped sediments back to the beach, which has been regarded to be the driving mechanism of beach stabilization effect of asymmetric ripple mat.

Numerical Study on Taylor Bubble Rising in Pipes

  • Shin, Seung Chul;Lee, Gang Nam;Jung, Kwang Hyo;Park, Hyun Jung;Park, Il Ryong;Suh, Sung-bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Slug flow is the most common multi-phase flow encountered in oil and gas industry. In this study, the hydrodynamic features of flow in pipes investigated numerically using computational fluid dynamic (CFD) simulations for the effect of slug flow on the vertical and bent pipeline. The compressible Reynold averaged Navier-Stokes (RANS) equation was used as the governing equation, with the volume of fluid (VOF) method to capture the outline of the bubble in a pipeline. The simulations were tested for the grid and time step convergence, and validated with the experimental and theoretical results for the main hydrodynamic characteristics of the Taylor bubble, i.e., bubble shape, terminal velocity of bubble, and the liquid film velocity. The slug flow was simulated with various air and water injection velocities in the pipeline. The simulations revealed the effect of slug flow as the pressure occurring in the wall of the pipeline. The peak pressure and pressure oscillations were observed, and those magnitudes and trends were compared with the change in air and water injection velocities. The mechanism of the peak pressures was studied in relation with the change in bubble length, and the maximum peak pressures were investigated for the different positions and velocities of the air and water in the pipeline. The pressure oscillations were investigated in comparison with the bubble length in the pipe and the oscillation was provided with the application of damping. The pressures were compared with the case of a bent pipe, and a 1.5 times higher pressures was observed due to the compression of the bubbles at the corner of the bent. These findings can be used as a basic data for further studies and designs on pipeline systems with multi-phase flow.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

Exploiting Spatial Reuse Opportunity with Power Control in loco parentis Tree Topology of Low-power and Wide-area Networks (대부모 트리 구조의 저 전력 광역 네트워크를 위한 전력 제어 기반의 공간 재사용 기회 향상 기법)

  • Byeon, Seunggyu;Kim, JongDeok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.194-198
    • /
    • 2021
  • LoRa is a physical layer technology that is designed to provide a reliable long-range communication with introducing CSS and with introducing a loco parentis tree network. Since a leaf can utilize multiple parents at the same time with a single transmission, PDR increases logarithmically as the number of gateways increases. Because of the ALOHA-like MAC of LoRa, however, the PDR degrades even under the loco parentis tree topology similarly to the single-gateway environment. Our proposed method is aimed to achieve SDMA approach to reuse the same frequency in different areas. For that purpose, it elaborately controls each TxPower of the senders for each message in concurrent transmission to survive the collision at each different gateway. The gain from this so-called capture effect increases the capacity of resource-hungry LPWAN. Compared to a typical collision-free controlled-access scheme, our method outperforms by 10-35% from the perspective of the total count of the consumed time slots. Also, due to the power control mechanism in our method, the energy consumption reduced by 20-40%.

  • PDF