DOI QR코드

DOI QR Code

Preparation of Bi/Bi2MoO6 Plasmonic Photocatalyst with High Photocatalytic Activity Under Visible Light Irradiation

  • Zou, Chentao (College of Chemistry and Chemical Engineering Hubei Key Laboratory of Pollutant, Analysis & Reuse Technology Hubei Normal University) ;
  • Yang, Zhiyuan (College of Chemistry and Chemical Engineering Hubei Key Laboratory of Pollutant, Analysis & Reuse Technology Hubei Normal University) ;
  • Liang, Mengjun (College of Chemistry and Chemical Engineering Hubei Key Laboratory of Pollutant, Analysis & Reuse Technology Hubei Normal University) ;
  • He, Yunpeng (College of Chemistry and Chemical Engineering Hubei Key Laboratory of Pollutant, Analysis & Reuse Technology Hubei Normal University) ;
  • Yang, Yun (College of Chemistry and Chemical Engineering Hubei Key Laboratory of Pollutant, Analysis & Reuse Technology Hubei Normal University) ;
  • Yang, Shuijin (College of Chemistry and Chemical Engineering Hubei Key Laboratory of Pollutant, Analysis & Reuse Technology Hubei Normal University)
  • Received : 2018.06.28
  • Accepted : 2018.10.04
  • Published : 2018.11.30

Abstract

Bi metal deposited on $Bi_2MoO_6$ composite photocatalysts have been successfully synthesized via a simple reduction method at room temperature with using $NaBH_4$ as the reducing agent. The photocatalytic activity of the composite was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) solution under visible light. The rate constant of $Bi/Bi_2MoO_6$ composite to RhB is 10.8 times that of $Bi_2MoO_6$, and the degradation rate constant of BPA is 6.9 times of that of $Bi_2MoO_6$. Nitrogen absorption-desorption isotherm proved that the increase of specific surface area is one of the reasons for the improvement of photocatalytic degradation activity of $Bi/Bi_2MoO_6$ composites. The higher charge transfer efficiency of $Bi/Bi_2MoO_6$ is found through the characterization of the photocurrent and impedance, which are attributed to the surface plasmon resonance (SPR) effect produced by the introduction of the metal Bi monomer in the composite. Free radical capture experiments proved that cavitation is the main active species. Based on the above conclusions, a possible mechanism of photocatalytic degradation is proposed.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Hubei Province, Hubei Normal University

References

  1. C. Chen, W. Ma and J. Zhao, Chem. Soc. Rev. 39, 4206 (2010). https://doi.org/10.1039/b921692h
  2. X. Lang, X. Chen and J. Zhao, Chem. Soc. Rev. 43, 473 (2014). https://doi.org/10.1039/C3CS60188A
  3. A. Kubacka, M. Fernandez-Garcia and G. Colon, Chem. Rev. 112, 1555 (2012). https://doi.org/10.1021/cr100454n
  4. J. Low, J. Yu, M. Jaroniec, S. Wageh and A. A. Al-Ghamdi, Adv. Mater. 29, 1601694 (2017). https://doi.org/10.1002/adma.201601694
  5. C. Gao, J. Wang, H. Xu and Y. Xiong, Chem. Soc. Rev. 46, 2799 (2017). https://doi.org/10.1039/C6CS00727A
  6. Z. Yang, L. Chen, Y. Yang, J. Wang, Y. Huang, X. Liu and S. Yang, Semicond. Sci. Technol. 32, 065008 (2017). https://doi.org/10.1088/1361-6641/aa67c0
  7. Y. Huang, S. Kang, Y. Yang, H. Qin, Z. Ni, S. Yang and X. Li, Appl. Catal. B Environ. 196, 89 (2016). https://doi.org/10.1016/j.apcatb.2016.05.022
  8. J. Guo, L. Shi, J. Zhao, Y. Wang, K. Tang, W. Zhang, C. Xie and X. Yuan, Appl. Catal. B Environ. 224, 692 (2018). https://doi.org/10.1016/j.apcatb.2017.11.030
  9. T. Ma, J. Wu, Y. Mi, Q. Chen, D. Ma and C. Chai, Sep. Purif. Technol. 183, 54 (2017). https://doi.org/10.1016/j.seppur.2017.04.005
  10. T. Hu, Y. Yang, K. Dai, J. Zhang and C. Liang, Appl. Surf. Sci. 456, 473 (2018). https://doi.org/10.1016/j.apsusc.2018.06.186
  11. M. Liang, Z. Yang, Y. Mei, H. Zhou and S. Yang, NANO 13, 1850028 (2018). https://doi.org/10.1142/S1793292018500285
  12. T. Lv, D. Li, Y. Hong, B. Luo, D. Xu, M. Chen and W. Shi, Dalton Trans. 46, 12675 (2017). https://doi.org/10.1039/C7DT02151H
  13. C. Lv, G. Chen, J. Sun, Y. Zhou, S. Fan and C. Zhang, Appl. Catal. B Environ. 179, 54 (2015). https://doi.org/10.1016/j.apcatb.2015.05.022
  14. Q. Hao, R. Wang, H. Lu, C.A. Xie, W. Ao, D. Chen, C. Ma, W. Yao and Y. Zhu, Appl. Catal. B Environ. 219, 63 (2017). https://doi.org/10.1016/j.apcatb.2017.07.030
  15. L. Hu, G. Zhang, M. Liu, Q. Wang and P. Wang, Chem. Eng. J. 338, 300 (2018). https://doi.org/10.1016/j.cej.2018.01.016
  16. L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang and T. Xiong, Appl. Catal. B Environ. 227, 376 (2018). https://doi.org/10.1016/j.apcatb.2018.01.042
  17. C.-Y. Wang, Y.-J. Zhang, W.-K. Wang, D.-N. Pei, G.-X. Huang, J.-J. Chen, X. Zhang and H.-Q. Yu, Appl. Catal. B Environ. 221, 320 (2018). https://doi.org/10.1016/j.apcatb.2017.09.036
  18. H. Li, J. Shang, Z. Ai and L. Zhang, J. Am. Chem. Soc. 137, 6393 (2015). https://doi.org/10.1021/jacs.5b03105
  19. S. Gao, C. Guo, J. Lv, Q. Wang, Y. Zhang, S. Hou, J. Gao and J. Xu, Chem. Eng. J. 307, 1055 (2017). https://doi.org/10.1016/j.cej.2016.09.032
  20. J. Lv, K. Dai, J. Zhang, Q. Liu, C. Liang and G. Zhu, Sep. Purif. Technol. 178, 6 (2017). https://doi.org/10.1016/j.seppur.2017.01.019
  21. M. Wang, M. You, P. Guo, H. Tang, C. Lv, Y. Zhang, T. Zhu and J. Han, J. Alloys Compd. 728, 739 (2017). https://doi.org/10.1016/j.jallcom.2017.09.066
  22. Z.-Q. Li, X.-T. Chen and Z.-L. Xue, CrystEngComm 15, 498 (2013). https://doi.org/10.1039/C2CE26260F
  23. L. Zhang, T. Xu, X. Zhao and Y. Zhu, Appl. Catal. B Environ. 98, 138 (2010). https://doi.org/10.1016/j.apcatb.2010.05.022
  24. J. Gao, C. Liu, F. Wang, L. Jia, K. Duan and T. Liu, Nanoscale Res. Lett. 12, 377 (2017). https://doi.org/10.1186/s11671-017-2157-y
  25. Q. Ouyang, Z. Li and J. Liu, Semicond. Sci. Technol. 33, 055010 (2018). https://doi.org/10.1088/1361-6641/aabc3e
  26. Z. Zhang, T. Zheng, J. Xu, H. Zeng and N. Zhang, J. Photochem. Photobiol. A Chem. 346, 24 (2017). https://doi.org/10.1016/j.jphotochem.2017.05.029
  27. A. Phuruangrat, P. Dumrongrojthanath, B. Kuntalue, S. Thongtem and T. Thongtem, Mater. Lett. 196, 256 (2017). https://doi.org/10.1016/j.matlet.2017.03.073
  28. X. A. Dong, W. Zhang, Y. Sun, J. Li, W. Cen, Z. Cui, H. Huang and F. Dong, J. Catal. 357, 41 (2018). https://doi.org/10.1016/j.jcat.2017.10.004
  29. Y. Liu, F. Zhou, S. Zhan and Y. Yang, J. Inorg. Organometallic Polym. Mater. 27, 1365 (2017). https://doi.org/10.1007/s10904-017-0590-0
  30. J. Jia, X. Du, E. Liu, J. Wan, C. Pan, Y. Ma, X. Hu and J. Fan, J. Phys. D Appl. Phys. 50, 145103 (2017). https://doi.org/10.1088/1361-6463/aa60e3
  31. P. Yan, L. Xu, D. Jiang, H. Li, J. Xia, Q. Zhang, M. Hua and H. Li, Electrochim. Acta 259, 873 (2018). https://doi.org/10.1016/j.electacta.2017.11.026
  32. P. Yan, L. Xu, X. Cheng, J. Qian, H. Li, J. Xia, Q. Zhang, M. Hua and H. Li, J. Electroanal. Chem. 804, 64 (2017). https://doi.org/10.1016/j.jelechem.2017.09.003
  33. F. Dong, T.Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng and Z. Wu, Chem. Commun. 50, 10386 (2014). https://doi.org/10.1039/C4CC02724H
  34. H. Wang, W. Zhang, X. Li, J. Li, W. Cen, Q. Li and F. Dong, Appl. Catal. B Environ. 225, 218 (2018). https://doi.org/10.1016/j.apcatb.2017.11.079
  35. Q. Jing, X. Feng, J. Pan, L. Chen and Y. Liu, Dalton Trans. 47, 2602 (2018). https://doi.org/10.1039/C7DT04475E
  36. Z. Zhao, W. Zhang, Y. Sun, J. Yu, Y. Zhang, H. Wang, F. Dong and Z. Wu, J. Phys. Chem. C 120, 11889 (2016). https://doi.org/10.1021/acs.jpcc.6b01188
  37. J. Li, X. Liu, L. Pan, W. Qin and Z. Sun, RSC Adv. 4, 62387 (2014).
  38. G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian and H. Fu, J. Mater. Chem. 21, 887 (2011). https://doi.org/10.1039/C0JM03040F
  39. X. Liu, L. Pan, T. Lv and Z. Sun, J. Colloid Interface Sci. 394, 441 (2013). https://doi.org/10.1016/j.jcis.2012.11.047
  40. X. Li, Y. Sun, T. Xiong, G. Jiang, Y. Zhang, Z. Wu and F. Dong, J. Catal. 352, 102 (2017). https://doi.org/10.1016/j.jcat.2017.04.025
  41. Y. Sun, Z. Zhao, W. Zhang, C. Gao, Y. Zhang and F. Dong, J. Colloid Interface Sci. 485, 1 (2017). https://doi.org/10.1016/j.jcis.2016.09.018
  42. S. Yu, H. Huang, F. Dong, M. Li, N. Tian, T. Zhang and Y. Zhang, ACS Appl. Mater. Interfaces 7, 27925 (2015). https://doi.org/10.1021/acsami.5b09994
  43. S. Yu, Y. Zhang, M. Li, X. Du and H. Huang, Appl. Surf. Sci. 391, 491 (2017). https://doi.org/10.1016/j.apsusc.2016.07.028
  44. T. Zhou, J. Hu and J. Li, Appl. Catal. B Environ. 110, 221 (2011). https://doi.org/10.1016/j.apcatb.2011.09.004
  45. B. Wang, W. Feng, L. Zhang, Y. Zhang, X. Huang, Z. Fang and P. Liu, Appl. Catal. B Environ. 206, 510 (2017). https://doi.org/10.1016/j.apcatb.2017.01.047
  46. X. Gao, H. B. Wu, L. Zheng, Y. Zhong, Y. Hu and X. W. Lou, Angew. Chem. 53, 5917 (2014). https://doi.org/10.1002/anie.201403611
  47. M. Wang, J. Han, P. Guo, M. Sun, Y. Zhang, Z. Tong, M. You and C. Lv, J. Phys. Chem. Solids 113, 86 (2018). https://doi.org/10.1016/j.jpcs.2017.10.019
  48. J. Lv, K. Dai, J. Zhang, L. Lu, C. Liang, L. Geng, Z. Wang, G. Yuan and G. Zhu, Appl. Surf. Sci. 391, 507 (2017). https://doi.org/10.1016/j.apsusc.2016.05.001
  49. J. Lv, J. Zhang, J. Liu, Z. Li, K. Dai and C. Liang, ACS Sustain. Chem. Eng. 6, 696 (2018). https://doi.org/10.1021/acssuschemeng.7b03032
  50. S. Weng, B. Chen, L. Xie, Z. Zheng and P. Liu, J. Mater. Chem. A 1, 3068 (2013). https://doi.org/10.1039/c2ta01004f
  51. C. Wang, J. Zhu, X. Wu, H. Xu, Y. Song, J. Yan, Y. Song, H. Ji, K. Wang and H. Li, Ceram. Int. 40, 8061 (2014). https://doi.org/10.1016/j.ceramint.2013.12.159
  52. X. Xiao, R. Hao, M. Liang, X. Zuo, J. Nan, L. Li and W. Zhang, J. Hazardous Mater. 233-234, 122 (2012). https://doi.org/10.1016/j.jhazmat.2012.06.062
  53. L. Xu, L. Yang, E. M. J. Johansson, Y. Wang and P. Jin, Chem. Eng. J. 350, 1043 (2018). https://doi.org/10.1016/j.cej.2018.06.046
  54. B. Liu, X. Liu, J. Liu, C. Feng, Z. Li, C. Li, Y. Gong, L. Pan, S. Xu and C. Q. Sun, Appl. Catal. B Environ. 226, 234 (2018). https://doi.org/10.1016/j.apcatb.2017.12.052
  55. K. Dai, L. Lu, C. Liang, G. Zhu, Q. Liu, L. Geng and J. He, Dalton Trans. 44, 7903 (2015). https://doi.org/10.1039/C5DT00475F
  56. T. Hu, P. Li, J. Zhang, C. Liang and K. Dai, Appl. Surf. Sci. 442, 20 (2018). https://doi.org/10.1016/j.apsusc.2018.02.146
  57. C. Yu, Z. Wu, R. Liu, D. D. Dionysiou, K. Yang, C. Wang and H. Liu, Appl. Catal. B Environ. 209, 1 (2017). https://doi.org/10.1016/j.apcatb.2017.02.057
  58. F. Dong, Q. Li, Y. Sun and W.-K. Ho, ACS Catal. 4, 4341 (2014). https://doi.org/10.1021/cs501038q
  59. J. Ding, Q. Li, Y. Su, Q. Yue, B. Gao and W. Zhou, Int. J. Hydrogen Energy 43, 9978 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.077
  60. S. Yu, Y. Zhang, M. Li, X. Du and H. Huang, Appl. Surf. Sci. 391, 491 (2017). https://doi.org/10.1016/j.apsusc.2016.07.028