• Title/Summary/Keyword: Capture Mechanism

Search Result 143, Processing Time 0.027 seconds

On-site Investigation and Verification of Effect of the Sea Urchin Removal Devices (전기장 자극을 활용한 성게제거장치의 해상성능 평가)

  • Kim, Dae-Jin;Lee, Jungkwan;Kim, Seonghun;Oh, Wooseok;Oh, Taegeon;Lee, Donggil;Lee, Kyounghoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.954-959
    • /
    • 2020
  • This study aimed to verify the effectiveness of rescue apparatus, that can capture crabs using external stimuli such as food and electricity, without relying on divers. In this study, a microcomputer-based controller and an IC-device-based controller were developed, and spot inspection was conducted using 20 modules and 30 sea urchin removal modules. Accordingly, 58, 18, 17, and 74 sea urchins were introduced in the first, second, third and fourth experiments, respectively. The result of evaluating the lure of each removal mechanism, based on the catch per unit effort, with an electrical stimulus was 1.1 (32/10), with a feeding stimulus was 3.4 (100/29), and with electrical and feeding stimuli was 3.5 (35/10).

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A.;Chung, Jean K.
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2021
  • The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests

  • Tong, Bao;Yoo, Chungsik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.33-48
    • /
    • 2022
  • This paper presents illustrative examples of the application of advanced digital image correlation (DIC) technology in the geotechnical laboratory tests, such as shallow footing test, trapdoor test, retaining wall test, and wide width tensile test on geogrid. The theoretical background of the DIC technique is first introduced together with fundamental equations. Relevant reduced-scale model tests were then performed using standard sand while applying the DIC technique to capture the movement of target materials during tests. A number of different approaches were tried to obtain optimized images that allow efficient tracking of material speckles based on the DIC technique. In order to increase the trackability of soil particles, a mix of dyed and regular sand was used during the model tests while specially devised painted speckles were applied to the geogrid. A series of images taken during tests were automatically processed and analyzed using software named VIC-2D that automatically generates displacements and strains. The soil deformation field and associated failure patterns obtained from the DIC technique for each test were found to compare fairly well with the theoretical ones. Also shown is that the DIC technique can also general strains appropriate to the wide width tensile test on geogrid, It is demonstrated in this study that the advanced DIC technique can be effectively used in monitoring the deformation and strain field during a reduced-scale geotechnical model laboratory test.

The Effect of the Technical and Virtual Creator Characteristics of Vtuber's Personal Broadcasting on Pleasure, Satisfaction, and Paid Sponsorship Intention: Based on the S-O-R Model (브이튜버(Vtuber) 개인방송의 기술적 특성과 가상 크리에이터 특성이 즐거움, 시청만족도 및 유료후원의도에 미치는 영향: S-O-R 모델을 기반으로)

  • Jin, Chengjun;Yang, Sung-Byung;Yoon, Sang-Hyeak
    • Journal of Information Technology Services
    • /
    • v.21 no.5
    • /
    • pp.107-127
    • /
    • 2022
  • Personal broadcasting utilizing Vtuber, a virtual creator made of 2D or 3D avatars, has recently appeared and is growing in popularity. Vtuber is a virtual person who broadcasts on the Internet using 2D or 3D avatars with real-time motion capture and computer graphics technologies. While the personal broadcasting industry utilizing Vtuber is proliferating, related studies have mainly concentrated on technical issues. Therefore, in this study, the antecedent factors that form the technical characteristics and virtual creator characteristics of Vtuber personal broadcasting are derived using the Stimulus-Organism-Response (S-O-R) model. Then the effect of these factors on viewer pleasure and satisfaction, which lead to increased paid sponsorship is to be examined. Furthermore, we investigate how this influencing mechanism fluctuates based on the avatar type (2D vs. 3D). This study contributes to empirical examinations of viewers' paid sponsorship intention in Vtuber personal broadcasting through the S-O-R model. It also offers insights that technological or virtual creator characteristics could improve viewers' pleasure, satisfaction, and even paid sponsorship.

Reliability Evaluation of Accelerated Carbonation Results According to Carbon Dioxide Concentration (이산화탄소 농도에 따른 촉진 탄산화 결과의 신뢰도 평가)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.166-167
    • /
    • 2022
  • The International Energy Agency(IEA) recommends that intergovernmental agreements reduce CO2 emissions by 2050 to about 50% in 2005 in its report. To realize these demands, it is suggested to actively utilize energy efficiency improvement technology, renewable energy, nuclear power, carbon dioxide capture & storage technology (CCS). In the field of building materials and cement, mineral carbonization technology is widely used. Inorganic by-products applicable to greenhouse gas storage include waste concrete, slag, coal ash, and gypsum. If the Mineral Carbonation Act is used, it is expected that about 12 million tons of greenhouse gases can be immobilized every year. Greenhouse gas immobilization using cement hydrate can be immobilized by injecting carbon dioxide into the hydrated products C-S-H, and Ca(OH)2. In the case of immobilization through concrete carbonization, a carbon dioxide promotion test is used, which is often different from the actual carbon dioxide carbonization reaction. If the external carbon dioxide concentration is abnormally higher than the reality, it is thought that it will be different from the actual reaction. In this study, the carbonation phenomenon according to the concentration and identification of the carbon dioxide reaction mechanism of cement hydrate was to be considered.

  • PDF

Real Scene Text Image Super-Resolution Based on Multi-Scale and Attention Fusion

  • Xinhua Lu;Haihai Wei;Li Ma;Qingji Xue;Yonghui Fu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Plenty of works have indicated that single image super-resolution (SISR) models relying on synthetic datasets are difficult to be applied to real scene text image super-resolution (STISR) for its more complex degradation. The up-to-date dataset for realistic STISR is called TextZoom, while the current methods trained on this dataset have not considered the effect of multi-scale features of text images. In this paper, a multi-scale and attention fusion model for realistic STISR is proposed. The multi-scale learning mechanism is introduced to acquire sophisticated feature representations of text images; The spatial and channel attentions are introduced to capture the local information and inter-channel interaction information of text images; At last, this paper designs a multi-scale residual attention module by skillfully fusing multi-scale learning and attention mechanisms. The experiments on TextZoom demonstrate that the model proposed increases scene text recognition's (ASTER) average recognition accuracy by 1.2% compared to text super-resolution network.

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

Characteristics of CaCO3 Sorbent Particles for the In-furnace Desulfurization (로 내 탈황을 위한 CaCO3 흡착제 입자의 분위기 기체와 체류 시간의 변화에 따른 특성)

  • Lee, Kang-Soo;Jung, Jae-Hee;Keel, Sang-In;Lee, Hyung-Keun;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • The in-furnace desulfurization technique is applied to the $O_2/CO_2$ combustion system for the carbon capture and storage (CCS) process because this combustion system does not need an additional chamber for the desulfurization. $CaCO_3$ sorbent particles, which have a wide range in size from a few nanometers to several tens of micrometers, are used for this process. In this study, an experimental system which can simulate the $O_2/CO_2$ combustion system was developed. $CaCO_3$ sorbent particles were exposed to the high temperature reactor at $1200^{\circ}C$ with various residence times (0.33-1.46 s) in air and $CO_2$ atmospheric conditions, respectively. The sorbent particles were then sampled at the inlet and outlet of the reactor and analyzed qualitatively/quantitatively using SMPS, XRD, TGA, and SEM. The results showed that the residence time and atmospheric condition in a high temperature reactor can affect the characteristics of the $CaCO_3$ sorbent particles used in the in-furnace desulfurization technique, such as the calcination rate and reaction mechanism.

Expression of Aquaporin-4 and -8 Genes in Mouse Uterus during the Estrous Cycle (발정주기 동안 생쥐 자궁에서의 Aquaporin-4와 -8 유전자의 발현)

  • Lee Ji Won;Kang Han Seung;Gye Myung Chan;Hong Seok Ho;Shin Hyeonsang;Kang Soo Mnn;Lee Sung Eun;Kim Moon Kyoo
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2004
  • Aquaporins(AQPs) are a family of transmembrane water channel proteins that are widely distributed in various tissues throughout the body and play a major role in Oanscellular and Oansepithelial water movement. Uterine endometrium undergoes recurrent uterine stromal edema in response to hormonal stimuli, however, the mechanism regulating the fluid transport during the estrous cycle has not been fully understood. To investigate the possible role of AQPs in water movement in uterus during the estrous cycle, expression patterns of AQP -1, -3, -4, -5, -8, and -9 UMh in mouse uterus were analyzed by using semiquantitative reverse transcription- polymerase chain reaction(RT-nR). We employed a combination of laser capture microdissection(LCM) and RT-PCR to examine the expression patterns in specific uterine cell types luminal epithelial cells(LE) and stromal cells(S). Our results showed that the level of AQP-4 mRNA was significantly increased while the level of AQP-3 mRNA was significantly decreased during the proestous through the estrus stage. In addition LCM revealed that AQP-4 and -8 mRNAs were highly expressed in LE compared with S. Taken together, these results suggest that AQPs may have an important function in physiological changes of mouse uterus during the estrous cycle.

  • PDF