• Title/Summary/Keyword: Capillary meniscus

Search Result 32, Processing Time 0.024 seconds

Geometry Effects of Capillary on the Evaporation from the Meniscus (모세관 단면 형상에 따른 계면 및 증발 특성)

  • Choi, Choong-Hyo;Jin, Songwan;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.313-319
    • /
    • 2007
  • The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries is much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four comers.

Measurements of Flow Meniscus Movement in a Micro Capillary Tube (마이크로 원형 모세관에서 계면 이동 현상의 측정)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a high-speed imaging and an image processing technique have been applied to detect the position of a meniscus as a function of time in the micro capillary flows. Two fluids with low and high viscosities, ethylene glycol and glycerin, were dropped into the entrance well of a circular capillary tube. The filling times of the meniscus in both cases of ethylene glycol and glycerin were compared with the theoretical models - Washburn model and its modified model based on Newman's dynamic contact angle equation. To evaluate the model coefficients of Newman's dynamic contact angle, time-varying contact angles under the capillary flows were measured using an image processing technique. By considering the dynamic contact angle, the estimated filling time from the modified Washburn model agrees well with the experimental data. Especially, for the lower-viscosity fluid, the consideration of dynamic contact angle is more significant than for the higher-viscosity fluid.

Flow Near the Meniscus of a Pressure-Driven Water Slug in Microchannels

  • Kim Sung-Wook;Jin Song-Wan;Yoo Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.710-716
    • /
    • 2006
  • Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.

A Study on the Miniature Loop Heat Pipe with Non-inverted Meniscus type Capillary Structure (Non-inverted Meniscus식 모세관 구조물을 이용한 소형 루프히트파이프에 관한 실험적 연구)

  • Chung, Won-Bok;Park, Soo-Yong;Doctarau, Viachaslau-V.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2142-2147
    • /
    • 2007
  • Experimental study was conducted to evaluate the performance of a miniature loop heat pipe (MLHP) with non-inverted meniscus type capillary structure. All parts of MLHP in this study were made of copper including the capillary structure and the distilled water was used as a working fluid of MLHP. The outer diameter of evaporator was 9 mm and its length was 119 mm. The effective pore size of the capillary structure was 30 micron and its porosity was 60%. The vapor transport line, the liquid transport line and the condenser were consisted of single 4.0 mm copper tube. The distance between the evaporator and the condenser region was 200 mm and the length of the loop was 969 mm. This MLHP was operated successfully at any orientation but the gravity highly influenced the thermal performance of the MLHP. The maximum thermal load was 130 watts at the bottom heat mode and the 20 watts at the top heat mode.

  • PDF

Micro droplet driven by thermocapillary and capillary valve (열모세관에 의한 미소액적 구동과 모세관 밸브)

  • Lim, Nam-Hyuk;Kim, Sung-Wook;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1777-1782
    • /
    • 2003
  • This paper presents the design, fabrication, and testing of the capillary-induced pressure drop valve, thermocapillary pumping of liquid droplet in hydrophilic channels and the splitting of droplet. The capillaryinduced pressure drop is derived with thermodynamic approach considering three-dimensional meniscus shape which is essential for calculating pressure drop in the diverging shape channel when the aspect ratio is close to one. The micro channel is fabricated via MEMS processes, which consists of the liquid stop valve to retard the liquid droplet, thermocapillary pumping region and the bifurcation region. Also the micro heaters are fabricated to drive the droplet by thermocapillary. The theoretical approaches agree well with the experimental data. The functionality of capillary valve is confirmed to be valid when the aspect ratio is smaller than one. To overcome the difficulty in splitting of the droplet due to the pressure drop in the general Y-shape channel, the protrusion shape is employed for easy splitting in the bifurcation channel.

  • PDF

Reorientation of Colloidal Crystalline Domains by a Thinning Meniscus

  • Im, Sang-Hyuk;Park, O-Ok
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.189-194
    • /
    • 2004
  • When water is evaporated quickly from a water-based colloidal suspension, colloidal particles protrude from the water surface, distorting it and generating lateral capillary forces between the colloidal particles. The protruded colloidal particles are then assembled into ordered colloidal crystalline domains that float on the water surface on account of their having a lower effective density than water. These colloidal crystal domains then assemble together by lateral capillary force and convective flow; the generated colloidal crystal has grain boundaries. The single domain size of the colloidal crystal could be controlled, to some extent, by changing the rate of water evaporation, but it seems very difficult to fabricate a single crystal over a large area of the water's surface without reorienting each colloidal crystal domain. To reorient such colloidal crystal domains, a glass plate was dipped into the colloidal suspension at a tilted angle because the meniscus (airwaterglass plate interface) is pinned and thinned by further water evaporation. The thinning meniscus generated a shear force and reoriented the colloidal crystalline domains into a single domain.

Effects of the Charging Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axially Grooved Wick

  • Suh, Jeong-Se;Kang, Chang-Ho;Hong, Jung-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • An analytical and experimental study has been conducted to determine the optimal charging mass of working fluid for the maximum heat transport capacity of heat pipe with axially grooved wick. When the heat pipe is operated in a steady state, the liquid-vapor meniscus recession of working fluid to the bottom of groove is occurred in the evaporator region. In this work, the optimal charging mass of working fluid was obtained by considering the meniscus recession from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the charging mass of working fluid within a heat pipe, and presented for the trend of maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal charging mass of working fluid were compared with those from the experiment, both of which were in good agreement with each other.

Visualization for racing effect and meniscus merging in underfill process (언더필 공정에서 레이싱 효과와 계면 병합에 대한 가시화)

  • Kim, Young Bae;Kim, Sungu;Sung, Jaeyong;Lee, MyeongHo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.351-357
    • /
    • 2013
  • In flip chip packaging, underfill process is used to fill epoxy bonder into the gap between a chip and a substrate in order to improve the reliability of electronic devices. Underfill process by capillary motion can give rise to unwanted air void formations since the arrangement of solder bumps affects the interfacial dynamics of flow meniscus. In this paper, the unsteady flows in the capillary underfill process are visualized and then the racing effect and merging of the meniscus are investigated according to the arrangement of solder bumps. The result is shown that at higher bump density, the fluid flow perpendicular to the main direction of flow becomes stronger so that more air voids are formed. This phenomenon is more conspicuous at a staggered bump array than at a rectangular bump array.

Effects of the Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axial Grooves (그루브형 히트파이프에서 작동유체량이 히트파이프 성능에 미치는 영향)

  • Suh, Jeong-Se;Park, Young-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • An analytical and experimental study of the thermal performance of axial heat pipe with axial groove is conducted to determine the optimal mass of working fluid for the maximum heat transport capacity of heat pipe with axial grooves. Generally, the mass of working fluid has been fully charged by considering only a geometrical shape of axial grooves embedded in a heat pipe. When the heat pipe is operated in a steady state, the meniscus re-cession phenomena of working fluid is occurred in the evaporator region. In this work, the optimal mass of working fluid was obtained from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the mass of working fluid within a heat pipe, and presented for the maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal mass of working fluid were compared with those of the experimental mass of working fluid.

Tribological properties of ultra-thin diamond-like carbon coating at various humidity

  • Cuong, Pham Duc;Ahn, Hyo-Sok;Kim, Choong-Hyun;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.161-162
    • /
    • 2002
  • This study concerns the tribological behaviors of ultra-thin DLC coating with 3 nm thickness deposited in a mixed gas of argon + 20 % hydrogen as a function of humidity. Reciprocating wear tests employing a micro wear tester were performed under various normal loads and relative humidity in air environment. The chemical composition of the original and worn surfaces were studied by Auger electron spectroscopy (AES). It showed that the ultra-thin DLC coating exhibited low friction with enough wear stability at low normal load (0.18 N) and its tribological behavior was strongly dependent on the humidity. The sample surfaces before and after the test were examined using atomic force microscopy (AFM). Capillary force and meniscus areas were discussed in order to explain the influence of humidity on the friction force.

  • PDF